Lecturer(s)
|
-
Brezina Jiří, Ing. Ph.D.
-
Daďourek Vladislav, prof. Ing. CSc.
|
Course content
|
1. Introduction to the principles of feedback control (historical periods of control theory, simple forms of feedback, technology change and knowledge transfer) 2. Models of controlled systems (simple process models, LTI models, fractional order models, model set, models for sampled-date systems) 3. Classical control system design (relay feedback, Nyquist stability theorem, robust stability, loopshaping, root locus) 4. Fundamental limitations in SISO control (sensor and actuator limitations, model-error limitation, disturbances, structural limitations, Bode's integral constraints, pole placement paradox) 5. PID control (PID controller, filtering the derivative, set-point weighting, integral windup) 6. Feedforward design (system inverses, approximate inverses, set-point weighting, pulse step control) 7. Design of simple controllers (rule base empirical tuning, Q-parameterization, robust regions method, design of robust controllers {PI, PID, PD, lead-lag, Smith predictor}, pidlab.com) 8. Automatic tuning of PID controller (robust moment autotuner, robust relay autotuner) 9. Control paradigms (bottom-up and top-down approaches, repetitive control, cascade control, selector control, ratio control, split range control, center seeking control) 10. Sliding mode control 11. Model based predictive control with constraints 12. Control system design for MIMO systems (internal model principle, active damping of vibration) 13. Examples of control system design for industrial processes
|
Learning activities and teaching methods
|
Laboratory work, Task-based study method, Lecture
- Contact hours
- 39 hours per semester
- Practical training (number of hours)
- 26 hours per semester
- Undergraduate study programme term essay (20-40)
- 30 hours per semester
- Preparation for formative assessments (2-20)
- 20 hours per semester
- Preparation for an examination (30-60)
- 50 hours per semester
|
prerequisite |
---|
Knowledge |
---|
disponovat základními znalostmi matematické analýzy |
disponovat základními znalostmi lineární algebry |
disponovat základními znalostmi matematického modelování dynamických systémů |
Skills |
---|
aplikovat základní pojmy a metody matematické analýzy |
aplikovat základní pojmy a metody lineární algebry |
aplikovat Fourierovu a Laplaceovu transformaci |
navrhovat nejjednodušší modely reálných soustav |
Competences |
---|
N/A |
N/A |
learning outcomes |
---|
Knowledge |
---|
disponovat nejzákladnějšími znalostmi metod návrhu strategií řízení dynamických soustav |
disponovat základními znalostmi klasické regulace soustav s jedním vstupem a jedním výstupem |
disponovat nejzákladnějšími metodami pokročilého řízení dynamických systémů |
Skills |
---|
řešit jednoduché úlohy průmyslové regulace |
navrhovat pokročilé struktury vícerozměrných regulačních obvodů |
Competences |
---|
N/A |
N/A |
teaching methods |
---|
Knowledge |
---|
Lecture |
Laboratory work |
Task-based study method |
Skills |
---|
Practicum |
Lecture with visual aids |
Task-based study method |
Competences |
---|
Group discussion |
Lecture supplemented with a discussion |
Task-based study method |
assessment methods |
---|
Knowledge |
---|
Oral exam |
Test |
Individual presentation at a seminar |
Skills |
---|
Individual presentation at a seminar |
Skills demonstration during practicum |
Competences |
---|
Oral exam |
Individual presentation at a seminar |
Recommended literature
|
-
Goodwin, Graham Clifford; Graebe, Stefan F.; Salgado, Mario E. Control system design. Upper Saddle River : Prentice Hall, 2001. ISBN 0-13-958653-9.
-
?ström, Karl J.; Hägglund, Tore. Advanced PID control. Research Triangle Park : ISA-The Instrumentation, Systems, and Automation Society, 2006. ISBN 1-55617-942-1.
|