Course: Introduction to Robotics and Mechatronics

» List of faculties » FAV » KKY
Course title Introduction to Robotics and Mechatronics
Course code KKY/URM
Organizational form of instruction Lecture + Tutorial
Level of course Bachelor
Year of study not specified
Semester Winter
Number of ECTS credits 6
Language of instruction Czech
Status of course unspecified
Form of instruction Face-to-face
Work placements This is not an internship
Recommended optional programme components None
Lecturer(s)
  • Daďourek Vladislav, prof. Ing. CSc.
  • Bosak Dušan, Ing.
  • Jón Ondřej, Ing. Ph.D.
Course content
Robotics part: 1. Introduction to the robotics (basics and history of the robotics). Architectures and fundamental terminology of the robots (opened/closed kinematic chain, end effector, joints, joint space, operational space, degrees of freedom, redundancy, singularity, basic types of actuators). Requirements on robots (sort of workspace, accuracy, repeatability, velocity, acceleration and force dependencies) 2. Coordinates systems, basic transformations of coordinates systems (elementary transformations - rotation, translation and their compositions). Transformation of vectors. 3. Direct geometric model of serial and parallel robots (locations of the end effector as a function of the joint variables). Solvability and methods of solving. Inverse geometric model of serial and parallel robots (joint variables as a function of the locations of the end effector). Solvability and methods of solving. 4. Direct kinematic model of serial and parallel robots (velocities of the end effector as a function of the joint velocities). Jacobian matrix. Inverse kinematic model of serial and parallel robots (joint velocities as a function of the velocities of the end effector). Jacobian matrix. Velocity and force dependencies. Velocity-force duality. Singular configurations, their analysis and effect on the control of the robots. 5. Workspace of the robot, dynamic model of the robot (Euler-Lagrange and Newton-Euler formulations). 6. Motion control and trajectory planning of the robot. Point to point movement of the end effector with respect to required shape of a trajectory. Velocity, acceleration, (eventually time-derivative of acceleration) constraints of the movement and methods of solving. Mechatronics part: 7. Introduction to the robotics (basics and history of the robotics). 8. Some concepts of structural dynamics (equation of motion of discrete systems, vibration modes, modal decomposition, continuous structures). 9. Dynamics of electrical networks (capacitor, inductor, voltage and current sources, Kirchhoff's laws, Hamilton's principle and Lagrange's equation for electric networks, examples) 10. Actuators, piezoelectric materials, and active structures (constitutive equations of piezoelectric systems, piezoelectric laminates, active and passive damping with piezoelectric transducers) 11. Active vibration isolation (passive isolator, the "sky-hook" damper). 12. State space approach to vibration control (pole placement method, LQG regulator, control of active cantilever beam). 13. Discussion.

Learning activities and teaching methods
Laboratory work, Task-based study method, Lecture
  • Preparation for an examination (30-60) - 50 hours per semester
  • Contact hours - 39 hours per semester
  • Practical training (number of hours) - 26 hours per semester
  • Preparation for formative assessments (2-20) - 10 hours per semester
  • Graduate study programme term essay (40-50) - 40 hours per semester
prerequisite
Knowledge
prokázat základní znalosti z lineární algebry (operace s maticemi, vektory, základní vlastnosti)
prokázat základní znalosti z fyziky (mechanika tuhého tělesa)
prokázat základí znalosti z geometrie (trigonometrie)
Skills
vyřešit soustavy lineárních rovnic
vyřešit soustavy jednoduchých nelináerních rovnic
analyzovat vlastnosti soustavy lineárních rovnic
pracovat s goniometrickými funkcemi
řešit základní geometrické úlohy
Competences
N/A
learning outcomes
Knowledge
teorie z vybraných problémových oblastí v robotice
reprezentace obecného prostorového pohybu v robotice
z řešení přímé a inverzní kinematické úlohy
z problematiky singulárních poloh manipulátorů a její řešení
z možnosti plánování pohybu robotů
možností reprezentací kinematiky manipulátorů (Denavit Hartenbergova úmluva)
Skills
v možnostech analýzy kinematického chování jednoduchých manipulátorů
z oblasti aplikace prostorových transformací pohybu tuhého tělesa (soustavy tuhých těles)
v možnostech analýzy a řešení kinematických transformací (úloh) pro manipulátory
v možnostech realizace jednoduchých generátorů pohybu pro roboty
Competences
N/A
teaching methods
Knowledge
Lecture
Task-based study method
Skills
Practicum
Individual study
Competences
Task-based study method
assessment methods
Knowledge
Combined exam
Skills
Combined exam
Competences
Seminar work
Recommended literature
  • Khalil, W.; Dombre, E. Modeling, identification & control of robots. London ; Kogan Page Science, 2002. ISBN 1-903996-66-X.
  • Preumont, André. Vibration control of active structures : an introduction. Dordrecht : Kluwer Academic Publishers, 2002. ISBN 1-4020-0496-6.
  • Sciavicco, Lorenzo; Siciliano, Bruno. Modelling and control of robot manipulators. London : Springer, 2005. ISBN 1-85233-221-2.


Study plans that include the course
Faculty Study plan (Version) Category of Branch/Specialization Recommended year of study Recommended semester