Course: Applications of Geometry 2

» List of faculties » FAV » KMA
Course title Applications of Geometry 2
Course code KMA/APG2
Organizational form of instruction Lecture + Seminar
Level of course Master
Year of study not specified
Semester Winter
Number of ECTS credits 4
Language of instruction Czech
Status of course unspecified
Form of instruction Face-to-face
Work placements This is not an internship
Recommended optional programme components None
Lecturer(s)
  • Káňa Michal, doc. RNDr. Ph.D.
  • Krauz Lukáš, doc. Ing. Ph.D.
Course content
Basic algebraic structures. Voronoi diagrams, their basic properties, algorithms, applications, generalization. Minkowski sum and its applications. Gröbner basis of a polynomial ideal (motivation, affine varieties and ideals, ordering of monoms in polynomials, division algorithm for multivariate polynomials, Dickson?s lemma, Hilbert basis theorem, properties of Gröbner basis, Buchberger?s algorithm, elimination theory). Application of Gröbner bases. Polynomial and rational PH curves, PN surfaces, definitions, properties, applications. Resultants for univariate and multivariate polynomials, properties, applications. Implicitization methods for algebraic varieties. Symbolic computations in mathematical software (Computer Algebra Systems).

Learning activities and teaching methods
Interactive lecture, Lecture supplemented with a discussion, E-learning, Students' portfolio, Self-study of literature
  • Preparation for an examination (30-60) - 45 hours per semester
  • Contact hours - 39 hours per semester
  • Presentation preparation (report in a foreign language) (10-15) - 10 hours per semester
  • Undergraduate study programme term essay (20-40) - 20 hours per semester
prerequisite
Knowledge
orientovat se v základních pojmech lineární algebry a geometrie, výhodou jsou znalosti pokročilých matematických struktur a geometrického modelování
Skills
aplikovat metody lineární algebry a geometrie na praktické úlohy
Competences
N/A
N/A
learning outcomes
Knowledge
rozumět pokročilým pojmů z oblasti algebraické geometrie a dokázat je aplikovat na praktické problémy
definovat Gröbnerovu bázi polynomiální ideálu
definovat rezultant pro danou množinu polynomů
Skills
najít Gröbnerovu bázi polynomiální ideálu
najít rezultant pro danou množinu polynomů
řešit soustavy nelineárních algebraických rovnic pomocí Gröbnerových bází
provést automatický důkaz řady geometrických tvrzení v rovině pomocí metod eliminace proměnných
najít implicitní vyjádření libovolné racionálně parametrizované nadplochy
Competences
N/A
N/A
teaching methods
Knowledge
Lecture
Lecture supplemented with a discussion
Interactive lecture
E-learning
Self-study of literature
Practicum
Students' portfolio
assessment methods
Combined exam
Seminar work
Individual presentation at a seminar
Recommended literature
  • Časopis CAGD (Computer Aided Geometric Design). ISSN 0167-8396.
  • Časopis JSC (Journal of Symbolic Computation). ISSN 0747-7171.
  • Cox, David A. Ideals, varieties, and algorithms. 2nd ed. New York [etc.] : Springer, 1997. ISBN 0-387-94680-2.
  • De Berg, Mark. Computational geometry : algorithms and applications. Berlin : Springer, 1997. ISBN 3-540-61270-X.
  • Kuroš, Alexander G. Kapitoly z obecné algebry. 2. vyd. Praha : Academia, 1977.


Study plans that include the course
Faculty Study plan (Version) Category of Branch/Specialization Recommended year of study Recommended semester