Course: Divisibility in Integral Domains

» List of faculties » FAV » KMA
Course title Divisibility in Integral Domains
Course code KMA/DEL
Organizational form of instruction Lecture + Tutorial
Level of course Bachelor
Year of study not specified
Semester Winter and summer
Number of ECTS credits 4
Language of instruction Czech
Status of course unspecified
Form of instruction Face-to-face
Work placements This is not an internship
Recommended optional programme components None
Lecturer(s)
  • Hofman Martin, RNDr. Mgr. Ph.D.
Course content
Week 1-3: Divisibility in integral domain, basic properties. Week 4-6: Gauss integral domains, basic properties. Week 7-8: Integral domain of principal ideals. Week 9-11: Euclidian integral domains, theirs properties, Gauss integers Week 12-13: Relationship between the gauss integral domains, integral domain of principal ideals and Euclidian integral domain.

Learning activities and teaching methods
Lecture supplemented with a discussion, Lecture with practical applications, Individual study
  • Preparation for an examination (30-60) - 40 hours per semester
  • Contact hours - 39 hours per semester
  • Undergraduate study programme term essay (20-40) - 30 hours per semester
prerequisite
Knowledge
orientovat se v základech matematické logiky, algebry a teorie grup
využívat znalosti v rozsahu středoškolského učiva
Skills
aplikovat principy matematických důkazů
Competences
N/A
N/A
learning outcomes
Knowledge
define the notion of divisibility in an integral domain
summarize the properties of gauss integral domain and apply them to particular integral domains
summarize the properties of integral domain of principal ideals and Euclidian integral domains
introduce relationships between the specific integral domains a apply them to particular domains
Skills
dělat celočíselné rozklady v oborech integrity
používat euklidův algoritmus
aplikovat souvislosti mezi jednotlivými obory integrity
Competences
N/A
teaching methods
Knowledge
Individual study
Interactive lecture
Skills
Individual study
Competences
Individual study
assessment methods
Knowledge
Combined exam
Seminar work
Individual presentation at a seminar
Skills
Seminar work
Competences
Seminar work
Recommended literature
  • Blažek, Jaroslav. Algebra a teoretická aritmetika. I.. Praha : Státní pedagogické nakladatelství, 1979.
  • Blažek, Jaroslav; Koman, Milan; Vojtašková, Blanka. Algebra a teoretická aritmetika : Celost. a vysokošk. učebnice pro stud. matematicko-fyzikálních, přírodověd. a pedagog. fakult. Díl 2.. 1. vyd. Praha : SPN, 1985.
  • Katriňák,T. a kol. Algebra a teoretická aritmetika (1). Bratislava, 1985.


Study plans that include the course
Faculty Study plan (Version) Category of Branch/Specialization Recommended year of study Recommended semester