Lecturer(s)
|
-
Kovaříková Freya, RNDr. Ph.D.
|
Course content
|
Conic sections (ellipse, parabola, hyperbola), focus based and projective properties. Axial affinity. Central collineation. Transformation of circle. Orthographic and Monge projection, axonometry. Algorithm for positional and metric properties. Projection of solids (prisms, pyramids, cylinders, cones, sphere). Cutting of solids.
|
Learning activities and teaching methods
|
Lecture supplemented with a discussion, Lecture with visual aids, Practicum
- Contact hours
- 52 hours per semester
- Preparation for an examination (30-60)
- 30 hours per semester
- Undergraduate study programme term essay (20-40)
- 30 hours per semester
|
prerequisite |
---|
Knowledge |
---|
In this course we suppose knowledge of high school geometry. |
learning outcomes |
---|
On completion of this module the student will be able to: -recognize two different types of projection (Monge projection and axonometry), -use this projections in constructions of elementary solids, -interpret object in projections (location, shape, size of objects), -apply knowledge about conic sections, axial affinity and central collineation in practice. |
teaching methods |
---|
Lecture with visual aids |
Lecture supplemented with a discussion |
Practicum |
assessment methods |
---|
Oral exam |
Written exam |
Recommended literature
|
-
Kraemer, Emil. Zobrazovací metody : Promítání rovnoběžné : Celost. vysokošk. učebnice pro stud. pedag., přírodovědeckých a matematicko-fyzikálních fakult. Praha : Státní pedagogické nakladatelství, 1991. ISBN 80-04-21778-8.
-
Urban, Alois. Deskriptivní geometrie. I.. Praha : SNTL, 1977.
|