Course: Combinatorial Optimization

» List of faculties » FAV » KMA
Course title Combinatorial Optimization
Course code KMA/KO
Organizational form of instruction Lecture + Tutorial
Level of course Master
Year of study not specified
Semester Winter and summer
Number of ECTS credits 5
Language of instruction Czech
Status of course unspecified
Form of instruction Face-to-face
Work placements This is not an internship
Recommended optional programme components None
Lecturer(s)
  • Marek Josef, doc. Ing. Ph.D.
Course content
1. Linear programming. Geometry of linear inequalities. Polyhedra. 2. Polyhedral combinatorics. Farkas lemma. Duality. Matrix games. 3. Simplex method. Dual simplex method. Sensitivity analysis. 4. Homotopy. Parametric programming. Revised simplex method. 5. Column generation method. Dantzig-Wolfe decomposition. 6. Integer and mixed integer linear programming. Cuts. LP and Lagrangian relaxation. Branch and bounds, branch and price, branch and cuts methods. 7. Nonlinear optimisation. Convex optimisation. KKT conditions. Duality. 8. Interior point methods for linear programming. Central path. Quadratic programming. 9. Semidefinite programming. Spectrahedrons. Duality. Vector programming. Interior points methods. 10. Cone programming. Nonlinear integer programming. 11. Multicriteria optimisation. Fuzzy optimisation. Stochastic optimisaton. 12. Robust optimisation. Hierarchical (multilevel) optimisation. Stackelberg games. 13. Approximation algorithms. Modern heuristics methods. Solution space of discrete optimisation problems and its analysis. Constraint programming. 14. Parallel algorithms for linear and semidefinite programming.

Learning activities and teaching methods
Interactive lecture, Lecture, Practicum
  • Preparation for an examination (30-60) - 56 hours per semester
  • Preparation for comprehensive test (10-40) - 35 hours per semester
  • Contact hours - 52 hours per semester
prerequisite
Knowledge
vysvětlit základní pojmy lineární algebry
vysvětlit základní pojmy matematické analýzy
vysvětlit základní pojmy teorie pravděpodobnosti
Skills
vyřešit základní úlohy lineární algebry
analyzovat jednoduché úlohy optimalizace funkcí
zhodnotit výpočetní složitost jednoduchých algoritmů
Competences
N/A
N/A
learning outcomes
Knowledge
formulovat standardní úlohy diskrétní optimalizace
vysvětlit základní optimalizační metody
vysvětlit použití relaxačních metod
klasifikovat optimalizační úlohy podle jejich aproximovatelnosti
Skills
řešit standardní úlohy diskrétní optimalizace
aplikovat aproximační algoritmy na standardní optimalizační úlohy
analyzovat složitější úlohy diskrétní optimalizace
posoudit vhodnost aproximačních a heuristických algoritmů pro danou úlohu
Competences
N/A
N/A
teaching methods
Knowledge
Lecture
Interactive lecture
Practicum
Skills
Practicum
Interactive lecture
Competences
Practicum
Interactive lecture
assessment methods
Knowledge
Oral exam
Skills
Skills demonstration during practicum
Test
Oral exam
Competences
Oral exam
Test
Recommended literature
  • Ehrgott, Matthias. Multicriteria optimization. Second edition. 2010. ISBN 978-3-642-05975-9.
  • Korte, Bernhard; Vygen, Jens. Combinatorial optimization : theory and algorithms. 2nd ed. Berlin : Springer, 2002. ISBN 3-540-43154-3.
  • Schrijver, A. Combinatorial optimization polyhedra and efficiency. Berlin : Springer-Verlag, 2004. ISBN 3-540-20456-3.
  • Vanderbei, Robert J. Linear programming : foundations and extensions. Fifth edition. 2020.


Study plans that include the course
Faculty Study plan (Version) Category of Branch/Specialization Recommended year of study Recommended semester