Lecturer(s)
|
-
Caletka Tomáš, RNDr. CSc.
|
Course content
|
Vectors, matrices, determinants, eigenvalues, eigenvectors. Systems of linear equations. Analytic geometry. Sequences. Functions of one real variable. Limits and continuity of function. Monotonic functions. Derivatives, concave down (up), extremes of functions. Behaviour of functions. Taylor's theorem. Indefinite and definite integral.
|
Learning activities and teaching methods
|
Lecture with practical applications, Multimedia supported teaching, Practicum
- Preparation for formative assessments (2-20)
- 12 hours per semester
- Preparation for comprehensive test (10-40)
- 24 hours per semester
- Preparation for an examination (30-60)
- 45 hours per semester
- Contact hours
- 78 hours per semester
|
prerequisite |
---|
Knowledge |
---|
A good knowledge of basic functions - polynomial functions, goniometric function, exponetial function etc.. Basic knowledge of analytic geometry - equation of the straight line. Skills in computing with algebraic terms, fractions, linear, qudratic equations and in solving linear systems of equations. |
learning outcomes |
---|
On completion of this module the student will be able to: - understand to terms: convergent sequence, geometric series, vector, matrix, the rank of matrix, the inverse of matrix, eigenvalue and eigenvector, function, derivative of function, graph of function; - know what the convergence sequence is; - be able to prove elementary theorems concerning sequences; - perform vectors and matrix calculations including reduction to echelon form; - solve general systems of linear equations; - differentiate function of a single real variable; - solve extremal problems; - describe the curve of function and sketch its graph; - compute indefinite and difinite integral. |
teaching methods |
---|
Practicum |
Multimedia supported teaching |
Interactive lecture |
assessment methods |
---|
Combined exam |
Test |
Recommended literature
|
-
Čížek, Jiří; Kubr, Milan; Míková, Marta. Sbírka příkladů z matematické analýzy I. 1. vyd. Plzeň : ZČU, 1995. ISBN 80-7082-216-3.
-
Dolanský, Petr; Tuchanová, Milena. Matematika pro ekonomy 1 : pro distanční studium. Plzeň : ZČU, 1995. ISBN 80-7082-183-3.
-
Dolanský, Petr; Tuchanová, Milena. Příklady z matematiky pro ekonomy I : distanční studium. 1. vyd. Plzeň : ZČU, 1995. ISBN 80-7082-184-1.
-
Drábek, Pavel; Míka, Stanislav. Matematická analýza I. Plzeň : Západočeská univerzita, 1999. ISBN 80-7082-558-8.
-
Jirásek, František; Kriegelstein, Eduard; Tichý, Zdeněk. Sbírka řešených příkladů z matematiky : logika a množiny, lineární a vektorová algebra, analytická geometrie, posloupnosti a řady, diferenciální a integrální počet funkcí jedné proměnné. 2. nezměn. vyd. Praha : SNTL, 1981.
-
Mašek, Josef. Základy matematiky I : cvičení. 1. vyd. Plzeň : Západočeská univerzita, 1999. ISBN 80-7082-567-7.
-
Tesková, Libuše. Sbírka příkladů z lineární algebry. 5. vyd. Plzeň : Západočeská univerzita, 2003. ISBN 80-7043-263-2.
|