Lecturer(s)
|
-
Pertlíček Jan, PhD
-
Bosman Luboš, RNDr.
-
Fillová Gabriela, doc. Ing. Ph.D.
|
Course content
|
1. Bases and coordinates, Einstein summation convention 2. Transformation of bases 3. Curvilinear coordinates 4. Tensor propedeutics 5. Tensor algebra 6. Tensor analysis 7. Vector fields 8. Field in a curvilinear system 9. Varieties and their description 10. Curvilinear integrals 11. Surface integrals 12. Integral characteristics of fields 13. Reserve
|
Learning activities and teaching methods
|
Multimedia supported teaching, Lecture, Practicum
- Preparation for comprehensive test (10-40)
- 20 hours per semester
- Contact hours
- 65 hours per semester
- Preparation for formative assessments (2-20)
- 10 hours per semester
- Preparation for an examination (30-60)
- 35 hours per semester
|
prerequisite |
---|
Knowledge |
---|
understand the basic principles of linear algebra |
understand the basic principles of differential calculus of functions of one and more variables |
understand the basic principles of integral calculus of functions of one and more variables |
Skills |
---|
parametrize basic curves |
perform arithmetic operations with vectors and matrices |
differentiate functions of one and more variables |
calculate single, double and triple integrals |
Competences |
---|
N/A |
N/A |
N/A |
N/A |
learning outcomes |
---|
Knowledge |
---|
understand the description of quantities in different coordinate systems |
understand the basic concepts and principles of tensor calculus |
understand the differential characteristics of tensor fields |
understand the integral characteristics of tensor fields |
Skills |
---|
calculate the covariant and contravariant coordinates of the vector |
determine differential characteristics of vector fields |
calculate curve and surface integrals |
apply Green, Stokes and Gauss Theorems |
Competences |
---|
N/A |
N/A |
N/A |
teaching methods |
---|
Knowledge |
---|
Task-based study method |
Interactive lecture |
Practicum |
Skills |
---|
Practicum |
Task-based study method |
Interactive lecture |
Competences |
---|
Task-based study method |
Interactive lecture |
Practicum |
assessment methods |
---|
Knowledge |
---|
Continuous assessment |
Test |
Combined exam |
Skills |
---|
Combined exam |
Test |
Continuous assessment |
Competences |
---|
Combined exam |
Continuous assessment |
Test |
Recommended literature
|
-
Boček, Leo. Tenzorový počet. 1. vyd. Praha : SNTL, 1976.
-
Míka, Stanislav. Matematická analýza III : tenzorová analýza. 1. vyd. Plzeň : Západočeská univerzita, 1993. ISBN 80-7082-115-9.
-
Spiegel Murray R. Schaum's Outline of Theory and Problems of Vector Analysis and An Introduction to Tensor Analysis. McGraw-Hill Book Company, Singapure, 1959. ISBN 0-07-084378-3.
-
Zachariáš, Svatopluk. Úvod do vektorové a tenzorové analýzy. 1. vyd. Plzeň : ZČU, 1998. ISBN 80-7082-445-X.
|