Lecturer(s)
|
-
Káňa Michal, doc. RNDr. Ph.D.
|
Course content
|
Polynomials (operations, Horner's algorithm, algebraic equations, the fundamental theorem of algebra). Matrix (matrix operations, determinant, the concept of inverse matrix). Systems of linear algebraic equations (Gauss elimination, Frobenius theorem, calculation of inverse matrix, other methods). Eigenvalues and eigenvectors. Vector calculus (basic operations, linear dependence, scalar, vector and mixed product). Analytic geometry in E3 (a description of linear objects, their relative position, distance and deviation, transversal lines for oblique lines). Geometric projection and transformation (homogeneous coordinates, affine transformations in E2 and E3). Coordinate systems (polar, spherical, cylindrical and their use). Non-linear objects (expression in vector and parametric form for curves, surfaces, conics and quadrics).
|
Learning activities and teaching methods
|
Students' portfolio, Lecture, Practicum
- Contact hours
- 52 hours per semester
- Preparation for an examination (30-60)
- 40 hours per semester
- Individual project (40)
- 15 hours per semester
|
prerequisite |
---|
Knowledge |
---|
Knowledge of mathematics for secondary schools. |
Skills |
---|
work with secondary school mathematics |
Competences |
---|
N/A |
N/A |
N/A |
learning outcomes |
---|
Knowledge |
---|
Student is able to solve system of linear algebraic equations, can use determinants and fully understands the operations with vectors and is prepared to use methods of spatial analytic geometry of linear and quadratic objects. She/he can create and apply a linear transformation in matrix form. |
Competences |
---|
N/A |
teaching methods |
---|
Knowledge |
---|
Lecture |
Practicum |
Students' portfolio |
Skills |
---|
Lecture |
Lecture |
Practicum |
Task-based study method |
Competences |
---|
Lecture |
Practicum |
Task-based study method |
assessment methods |
---|
Knowledge |
---|
Oral exam |
Test |
Skills |
---|
Oral exam |
Test |
Competences |
---|
Oral exam |
Test |
Recommended literature
|
-
Ježek, František; Míková, Marta. Maticová algebra a analytická geometrie. 2., přeprac. vyd. Plzeň : Západočeská univerzita, 2003. ISBN 80-7082-996-6.
-
Mezník, Ivan; Karásek, Jiří; Miklíček, Josef. Matematika I pro strojní fakulty. 1. vyd. Praha : SNTL, 1992.
|