Course: Numerical Methods

» List of faculties » FAV » KMA
Course title Numerical Methods
Course code KMA/NM-A
Organizational form of instruction Lecture + Tutorial
Level of course Bachelor
Year of study not specified
Semester Summer
Number of ECTS credits 6
Language of instruction English
Status of course unspecified
Form of instruction Face-to-face
Work placements This is not an internship
Recommended optional programme components None
Lecturer(s)
  • Šulc Hynek, doc. Ing. Ph.D.
Course content
1. Problems of numerical mathematics, ill-conditioned and well-conditioned problems, stability of algorithms, computational software. 2. Methods for root finding and methods for solution of nonlinear sets of equations. 3. Direct methods for solving linear algebraic equations. 4. Iterative methods for solving linear algebraic equations. 5. Gradient methods for solving linear algebraic equations. 6. Methods for solving eigenvalue problems. 7. Approximation of functions. 8. L2 approximation, discrete Fourier transform. 9. Numerical differentiation 10. Numerical integration. 11. Numerical methods for ordinary differential equations - one-step methods. 12. Numerical methods for ordinary differential equations - multi-step methods.

Learning activities and teaching methods
Interactive lecture, Lecture supplemented with a discussion, Lecture with practical applications, Discussion, Students' portfolio
  • Contact hours - 65 hours per semester
  • Presentation preparation (report in a foreign language) (10-15) - 15 hours per semester
  • Preparation for an examination (30-60) - 60 hours per semester
  • Preparation for formative assessments (2-20) - 20 hours per semester
prerequisite
Knowledge
The students must have basic knowledge of mathematical analysis (KMA/MA1 or KMA/M1 or KMA/ME1 or KMA/MS1) and linear algebra (KMA/LA1).
learning outcomes
Upon completion of the course a student have a possibility to be able: - formulate problems of numerical matematics and analyze their solvability; - use these methods to solve real world problems; - analyze numerical errors and convergence of relevant methods; - analyze conditioness and stability of algorithms.
teaching methods
Lecture supplemented with a discussion
Interactive lecture
Students' portfolio
Discussion
assessment methods
Oral exam
Written exam
Seminar work
Individual presentation at a seminar
Recommended literature
  • Benda, Josef; Černá, Růžena. Numerická matematika : doplňkové skriptum. Vyd. 2. Praha : Vydavatelství ČVUT, 2000. ISBN 80-01-02156-4.
  • Chapra, Steven C.; Canale, Raymond P. Numerical methods for engineers. 2nd ed. New York : McGraw-Hill Book Company, 1990. ISBN 0-07-100412-2.
  • Míka, Stanislav; Brandner, Marek. Numerické metody I. 1. vyd. Plzeň : Západočeská univerzita, 2000. ISBN 80-7082-619-3.
  • Muzikářová, Hana; Voříšek, Jan. Úvod do numerické matematiky. Vyd. 1. Praha : Vysoká škola ekonomická, 1995. ISBN 80-7079-449-6.
  • Přikryl, Petr; Brandner, Marek. Numerické metody II. 1. vyd. Plzeň : Západočeská univerzita, 2000. ISBN 80-7082-699-1.
  • Ralston, Anthony. Základy numerické matematiky. 2. vyd. Praha : Academia, 1978.
  • Samarskij, Aleksandr Andrejevič; Nikolajev, Jevgenij Sergejevič. Numerické řešení velkých řídkých soustav : celost. vysokošk. příručka pro stud. matematicko-fyz. a přírodověd. fakult. 1. vyd. Praha : Academia, 1985.
  • Vitásek, Emil. Numerické metody. 1. vyd. Praha : SNTL, 1987.


Study plans that include the course
Faculty Study plan (Version) Category of Branch/Specialization Recommended year of study Recommended semester