Course: Seminar to Mathematics 2

» List of faculties » FAV » KMA
Course title Seminar to Mathematics 2
Course code KMA/SM2E
Organizational form of instruction Seminar
Level of course Bachelor
Year of study not specified
Semester Summer
Number of ECTS credits 2
Language of instruction Czech
Status of course Optional
Form of instruction Face-to-face
Work placements This is not an internship
Recommended optional programme components None
Lecturer(s)
  • Pech Ondřej, Ing. Ph.D.
  • Breitfelder Ondřej, Mgr.
  • Caletka Tomáš, RNDr. CSc.
  • Valentová Ivana, doc. Ing. Ph.D.
  • Zouvalová Katarína, Ing. Ph.D.
Course content
Week 1-2: ODEs of the 1st order, nonlinear, linear. General and particular solutions, singular solutions. Formulation of the initial value problem. Methods of solving ODEs of the 1st order: direct integration, separation of variables, variation of parameters. Week 3-6: Linear ODEs of higher orders - homogeneous, nonhomogeneous, with constant coefficients. Method of characteristic equation. Variation of parameters. Week 7: Systems of ODEs of the 1st order. Week 8 : Laplace transform. Inverse Laplace transform. Application to initial value problems for ODEs. Week 10-11: Function series, point convergence, uniform convergence. Power series. Taylor series. Fourier series. Week 12: Power and Fourier methods of solving boundary value problems. Week 13: Recapitulation.

Learning activities and teaching methods
Seminar classes, Seminar, Practicum
  • Preparation for formative assessments (2-20) - 10 hours per semester
  • Contact hours - 26 hours per semester
  • Preparation for comprehensive test (10-40) - 18 hours per semester
prerequisite
Knowledge
There is no prerequisite for this course. Students should be familiar with basic notions of mathematical analysis to the extent of the course KMA/M1E.
learning outcomes
By the end of the course, a successful student should be able to: 1. Classify ordinary differential equations; 2. Formulate the basic initial and boundary value problems for ODEs; 3. Solve ODEs of the first order; 4. Solve linear ODEs of the n-th order with constant coefficients; 5. Solve systems of linear ODEs of the first order; 6. Deal with function sequences and function series. 7. Expend a function into Fourier series.
teaching methods
Seminar
Practicum
Seminar classes
assessment methods
Test
Skills demonstration during practicum
Recommended literature
  • Jirásek, František; Kriegelstein, Eduard; Tichý, Zdeněk. Sbírka řešených příkladů z matematiky : logika a množiny, lineární a vektorová algebra, analytická geometrie, posloupnosti a řady, diferenciální a integrální počet funkcí jedné proměnn. Praha : SNTL, 1981.
  • Jirásek, František; Vacek, Ivan; Čipera, Stanislav. Sbírka řešených příkladů z matematiky II. 1. vyd. Praha : SNTL, 1989.
  • Mašek, Josef. Základy matematiky II : cvičení. 1. vyd. Plzeň : ZČU, 1999. ISBN 80-7082-507-3.


Study plans that include the course
Faculty Study plan (Version) Category of Branch/Specialization Recommended year of study Recommended semester