Lecturer(s)
|
-
Piskač Tomáš, prof. RNDr. DSc.
|
Course content
|
1. The axioms of the Zermelo-Fraenkel set theory. 2. Relations, mappings, orders. 3. Natural numbers, a construction of the real numbers. 4. Finite sets. 5. Well-orderings. 6. Ordinals. 7. Cardinality of sets. 8. Cardinals. 9. The axiom of choice.
|
Learning activities and teaching methods
|
Lecture
- Preparation for an examination (30-60)
- 32 hours per semester
- Contact hours
- 52 hours per semester
|
prerequisite |
---|
Knowledge |
---|
In view of the axiomatic treatment of set theory, the completion of An Introduction to Mathematical Logic (KMA/ML) may be an advantage for those taking up this course. |
learning outcomes |
---|
Upon completion of this course, students will acquire basic orientation in the subject and become capable of independent study of the literature. |
teaching methods |
---|
Lecture |
assessment methods |
---|
Oral exam |
Recommended literature
|
-
Balcar, Bohuslav; Štěpánek, Petr. Teorie množin. 2., opr. a rozš. vyd. Praha : Academia, 2001. ISBN 80-200-0470-X.
-
Fuchs, Eduard. Teorie množin pro učitele. Vyd. 1. Brno : Přírodovědecká fakulta Masarykovy univerzity, 1999. ISBN 80-210-2201-9.
-
Vopěnka P., Blažek J., Kussová B. Úvod do axiomatické teorie množin. UK SPN Praha, 1972.
|