Lecturer(s)
|
|
Course content
|
1. Vector algebra - inner and vector product. 2. Applications of vector product in geometry. 3. Analytic geometry in 3D - lines, planes. 4. Matrix. Operations with matrices. 5. Systems of linear algebraic equations. 6. Linear vector space, linear dependence and independence. 7. Integral calculus, indefinite integral. 8. Techniques of integration, substitution, integration by parts. 9. Definite integral. Applications of integral calculus. 10. Differential equations of the 1st order. Methods of solution: separation of variables, variation of parameter. 11. Linear differential equations of the 1nd order, homogeneous, nonhomogeneous, with constant parameters.
|
Learning activities and teaching methods
|
Interactive lecture, Task-based study method, Students' self-study, Practicum
- Preparation for formative assessments (2-20)
- 10 hours per semester
- Contact hours
- 26 hours per semester
- Preparation for an examination (30-60)
- 30 hours per semester
- Preparation for comprehensive test (10-40)
- 10 hours per semester
|
prerequisite |
---|
Knowledge |
---|
Students should be familiar with basic notions of mathematics to the extent of the course KMA/VKAN1. |
learning outcomes |
---|
Students are supposed to understand elementary theory of linear space (linear space of matrixes, etc.) as well as vectors and matrix algebra. They will be ready to solve systems of linear algebraic equations. The main objective is to develop basic skills int computing and to show various techniques for solving problems of integral calculus. |
teaching methods |
---|
Interactive lecture |
Practicum |
Task-based study method |
Self-study of literature |
assessment methods |
---|
Combined exam |
Test |
Skills demonstration during practicum |
Recommended literature
|
-
Delventhal, Katka Maria; Kissner, Alfred; Kulick, Malte. Kompendium matematiky : vzorce a pravidla : četné příklady včetně řešení : od základních operací po vyšší matematiku. V Praze : Euromedia Group - Knižní klub, 2004. ISBN 80-242-1227-7.
-
Dolanský, Petr. Matematika pro distanční studium. 1. Plzeň : Západočeská univerzita, 2000. ISBN 80-7082-643-6.
-
Vošický, Zdeněk. Matematika v kostce : [pro střední školy]. 1. vyd. Havlíčkův Brod : Fragment, 1996. ISBN 80-7200-012-8.
|