Course: Integral Calculus and Series

» List of faculties » FAV » KMA
Course title Integral Calculus and Series
Course code KMA/ZME3
Organizational form of instruction Lecture + Tutorial
Level of course Bachelor
Year of study not specified
Semester Winter
Number of ECTS credits 6
Language of instruction Czech
Status of course unspecified
Form of instruction Face-to-face
Work placements This is not an internship
Recommended optional programme components None
Lecturer(s)
  • Valentová Ivana, doc. Ing. Ph.D.
Course content
Week 1: Laplace transform, inverse transform, solving linear constant coefficient differential equations using Laplace transform Week 2: Double integral, Fubini theorem. Methods to computation. Change of variables in a double integrals. Week 3: Triple integral. Methods to computation. Week 4: Scalar field, gradient, directional derivative. Week 5: Vector fields, divergence and curl. Operator Laplace, Hamilton. Week 6: Paths and parametrizations. Path integrals of scalar fields. Path integrals of vector fields, Week 7: Parametrized surfaces. Surface integral of scalar and vector fields. Integration theorems of vector calculus. Week 8: Series of real number, conergent and divergent series. Week 9: Sequences of functions, point-wise and uniform konvergence. Week 10-11: Power series and their convergence. Taylor's series Week 12-13: Fourier series.

Learning activities and teaching methods
Interactive lecture, Task-based study method, Students' self-study
  • Preparation for formative assessments (2-20) - 24 hours per semester
  • Contact hours - 78 hours per semester
  • Preparation for an examination (30-60) - 56 hours per semester
prerequisite
Knowledge
Students should be familiar with basic notions of the course KMA/ZME1, KMA/ZME2.
learning outcomes
By the end of the course, a successful student should be able to: Evaluate double and triple integral, parametrization of curves and surfaces, evaluate line and surfece integral. Deal with function sequences and function series. Expend a function into Fourier series.
teaching methods
Interactive lecture
Task-based study method
Self-study of literature
assessment methods
Combined exam
Test
Skills demonstration during practicum
Recommended literature
  • Drábek, Pavel; Míka, Stanislav. Matematická analýza II.. 4. vyd. Plzeň : Západočeská univerzita, 2003. ISBN 80-7082-977-X.
  • Jirásek, František; Kriegelstein, Eduard; Tichý, Zdeněk. Sbírka řešených příkladů z matematiky : logika a množiny, lineární a vektorová algebra, analytická geometrie, posloupnosti a řady, diferenciální a integrální počet funkcí jedné proměnné. 2. nezměn. vyd. Praha : SNTL, 1981.
  • Jirásek, František; Vacek, Ivan; Čipera, Stanislav. Sbírka řešených příkladů z matematiky II. 1. vyd. Praha : SNTL, 1989.
  • Mašek, Josef. Sbírka úloh z matematiky : integrální transformace. 1. vyd. Plzeň : ZČU, 1993. ISBN 80-7082-117-5.
  • Polák, Josef. Funkční posloupnosti a řady, Fourierovy řady. 1. vyd. Plzeň : Západočeská univerzita, 1995. ISBN 80-7082-224-4.
  • Polák, Josef. Integrální a diskrétní transformace. 3.,přeprac. vyd. Plzeň : Západočeská univerzita, 2002. ISBN 80-7082-924-9.


Study plans that include the course
Faculty Study plan (Version) Category of Branch/Specialization Recommended year of study Recommended semester