Course: Nonlinear dynamics and chaos

» List of faculties » FAV » KME
Course title Nonlinear dynamics and chaos
Course code KME/DYCH
Organizational form of instruction Lecture + Tutorial
Level of course Master
Year of study not specified
Semester Summer
Number of ECTS credits 5
Language of instruction Czech, English
Status of course unspecified
Form of instruction Face-to-face
Work placements This is not an internship
Recommended optional programme components None
Lecturer(s)
  • Urban František, doc. Ing. Ph.D.
Course content
1.Discrete dynamical system. Generalized coordinates, constrains, configurational and phase space. Principle of the virtual work, equilibrium stability. 2.Hamiltonial principle. Lagrangian equations of second order, dissipation. Balance laws, Noether theorem, Liouville theorem, Poisson brackets 3. Canonical equations and transformations. Legendre transformation, Hamiltonian equations (Hamilton-Jacobi theory). 4.Basic terms of the nonlinear dynamical systems theory, continuous and discrete dynamical systems 5.Fixed points and attractors in autonomous systems - ecological systems 6.Limit cycles in autonomous systems - bifurcation types, bifurcation in chemical oscillator, quasiperiodic solution 7.Periodic and chaotic attractors of excited oscillators - Poincare's mapping, Van der Pol oscillator, Birkhoff-Shaw chaotic attractor 8.Stability and bifurcation of iterative mappings. Chaos of iterative mappings, logical mapping, Smale horseshoe 9. Multiple scale method 10.Types of chaos transition, period doubling, intermitance, quasiperiodic way, crisis 11.Applications, Lorenz system, Rossler band 12.Chaos in the hamoltonian systems

Learning activities and teaching methods
Lecture, Practicum
  • Graduate study programme term essay (40-50) - 42 hours per semester
  • Preparation for an examination (30-60) - 40 hours per semester
  • Contact hours - 52 hours per semester
prerequisite
Knowledge
orient yourself in differential equations
orient yourself in differential and integral calculus
orient yourself in the classical mechanics of material points and bodies
orient yourself in numerical mathematics
Skills
describe and solve specific problems of differential and integral calculus in application to mechanical systems
describe and solve basic types of first and second order differential equations with applications in physics
describe and solve the balance of a system of material points and bodies (static and dynamic problems)
Competences
N/A
N/A
N/A
learning outcomes
Knowledge
describe approximation methods for solving nonlinear problems (method of multiple scales and reduction to a central variety)
describe the division of dynamical systems
describe problems in Newtonian and Hamiltonian mechanics
enumerate and explain the basic concepts and theorems of the theory of nonlinear dynamical systems
explain the basics of deterministic chaos theory
Skills
characterize the properties of the obtained solution (stability, chaos, etc.)
find approximations of the solution using the method of multiple scales or reduction to the central variety
solve problems of the dynamics of linear and non-linear systems
determine bifurcations of codimension 1
Competences
N/A
N/A
teaching methods
Knowledge
Task-based study method
Interactive lecture
Skills
Individual study
Practicum
Competences
Individual study
assessment methods
Knowledge
Oral exam
Seminar work
Skills
Individual presentation at a seminar
Skills demonstration during practicum
Competences
Oral exam
Recommended literature
  • Brdička, Miroslav; Hladík, Arnošt. Teoretická mechanika : Celost. vysokošk. učebnice pro stud. matematicko-fyz. a pedagog. fakult, stud. oboru učitelství všeobecně vzdělávacích předmětů. 1. vyd. Praha : Academia, 1987.
  • Horák, Jiří; Krlín, Ladislav; Raidl, Aleš. Deterministický chaos a jeho fyzikální aplikace. Vyd. 1. Praha : Academia, 2003. ISBN 80-200-0910-8.
  • Kuypers, F. Klassische Mechanik. Weinheim, SRN VHC Verlagsgesellchaft mbH, 1989.
  • Nayfeh, Ali Hasan; Balachandran, Balakumar. Applied nonlinear dynamics : analytical, computational, and experimental methods. New York : John Wiley & Sons, 1995. ISBN 0-471-59348-6.
  • Obetková, Viera; Košinárová, Anna; Mamrillová, Anna. Teoretická mechanika. 1. vyd. Bratislava : Alfa, 1990. ISBN 80-05-00597-0.
  • Rosenberg, Josef. Teoretická mechanika. 1. vyd. Plzeň : ZČU, 1994. ISBN 80-7082-119-1.
  • Thompson, J. M. T.; Stewart, H. B. Nonlinear dynamics and chaos. 2nd ed. Chichester : John Wiley & Sons, 2002. ISBN 0-471-87645-3.


Study plans that include the course
Faculty Study plan (Version) Category of Branch/Specialization Recommended year of study Recommended semester