Lecturer(s)
|
-
Palaščáková Špringrová Tereza, doc. Ing. Ph.D.
-
Martinec Radomír, Ing. Ph.D.
|
Course content
|
1. Introduction to the subject, characteristics of the electrical power system (ES) of the Czech Republic, voltage levels, types of transmission and distribution networks and the way of their operation - network solutions in terms of construction and mode of operation (wiring arrangement), network solution from the point of view of the transformer node to ground operational and economic importance. 2. Defining the electrical network (active, passive parameters) - nodes, branches. Calculation of passive parameters of overhead lines. 3. Transformers (two-wire, three-wire), label values, short-circuit and no-load state, replacement scheme, passive parameter calculation. Capacitors, Chokes. 4. Creation of substitute schematic of part of ES, assumptions of solution, conversion to one voltage level, conversion between proportional quantities and quantities in named (real) units, calculation of longitudinal impedances (reactances) of individual elements of the network. 5. Voltage, current and power conditions on the line, the possibility of neglecting some passive parameters, using two-port alternatives, phasor diagrams. Determination of power flows in a branch. Losses in the branch. 6. Voltage drop across lines (DC, DC - 1F and 3F, powered from one or both sides, with one or more sampling), definition, phasor diagram, calculation. 7. Solution of voltage, current and power ratios in electric networks - method of gradual simplification. 8. Solution of voltage, current and power ratios in n-node electric networks - method of nodal voltages, creation and comparison of properties of admittance and impedance matrices, derivation of equations of system operation. 9. Calculation of system operation using iterative methods (Gauss-Seidel, Newton-Raphson), comparison, flowcharts, solution procedure, convergence. 10. EC losses. Calculate network losses based on node sampling. 11. Failure states in electric networks (origin, division), symmetrical faults - three-phase short circuit. Course, effects and calculation of short-circuit currents. Dimensioning of equipment for the effects of (thermal, dynamic) short-circuit currents. 12. Unbalanced fault states, decomposition of asymmetric system to symmetrical components, disturbances. 13. Unbalanced fault conditions, longitudinal disturbances. Utilization of the method of joining simplified component replacement schemes for modeling various transverse and longitudinal faults.
|
Learning activities and teaching methods
|
One-to-One tutorial, Individual study, Lecture, Practicum
- Practical training (number of hours)
- 26 hours per semester
- Contact hours
- 39 hours per semester
- Preparation for formative assessments (2-20)
- 12 hours per semester
- Preparation for comprehensive test (10-40)
- 20 hours per semester
- Preparation for an examination (30-60)
- 40 hours per semester
|
prerequisite |
---|
Knowledge |
---|
to describe electric power concepts and laws |
to justify the concept of the Electric Power System of the Czech Republic |
to identify individual components of ES (overhead and cable lines, transformer), their function and design |
Skills |
---|
to apply secondary school and university mathematics to the solved problematics (e.g. to use symbolic-complex method) |
Competences |
---|
N/A |
N/A |
N/A |
learning outcomes |
---|
Knowledge |
---|
to characterize the electric power system (ES) of the Czech Republic in terms of both the design and operational solution of electrical networks (according to ordered wiring) at different voltage levels |
to characterize the transmission and distribution networks of the Czech Republic from the point of view of the transformer node interconnection with the ground, to explain the operational and economic importance |
define passive parameters of individual elements of ES (line, transformer, choke, capacitor) |
explain the procedure of creating a substitute schematic of ES parts of different complexity |
to explain methods for solving of voltage, current and power relationship on a line, i.e. be able to determine its active parameters |
to formulate mathematically the steady running of ES in symmetrical and asymmetric state and indicate the progress of its usable solutions in specific calculations |
to define, characterize and describe different types of faults occurring in ES |
Skills |
---|
calculate the passive parameters of the specific overhead line or transformer |
to solve voltage and current conditions on lines for different voltage levels |
create an substitute scheme of any specified part of ES and use it in calculations of voltage, current and power output relationship in networks of different voltage levels in solving operational and fault conditions |
to solve the ES Load Flow in a steady state using the nodal voltage method and numerically using iterative methods (Newton-Raphson and Gauss-Seidl) |
to determine short-circuit relationships in different ES locations, to calculate short-circuit currents for the specific type of failure, to carry out the asymmetric decomposition (for U or I) into symmetrical components |
Competences |
---|
N/A |
N/A |
teaching methods |
---|
Knowledge |
---|
Lecture |
Practicum |
One-to-One tutorial |
Skills |
---|
Lecture with visual aids |
Lecture supplemented with a discussion |
Practicum |
Task-based study method |
Skills demonstration |
Individual study |
One-to-One tutorial |
Discussion |
Interactive lecture |
Competences |
---|
Lecture |
Practicum |
assessment methods |
---|
Knowledge |
---|
Combined exam |
Seminar work |
Test |
Skills |
---|
Combined exam |
Skills demonstration during practicum |
Seminar work |
Test |
Competences |
---|
Combined exam |
Recommended literature
|
-
Beran, Hájek, Mertlová. Přenos a rozvod el. energie. skripta VŠSE.
-
Beran, M., Hájek, J., Mertlová, J. Přenos a rozvod el. en. - Příklady. VŠSE, 1982.
-
Grigsby, Leonard L. Electric power generation, transmission, and distribution. 3rd ed. Boca Raton : CRC Press, 2012. ISBN 978-1-4398-5628-4.
-
Grigsby, Leonard L. Power systems. 3rd ed. Boca Raton : CRC Press, 2012. ISBN 978-1-4398-5633-8.
-
Hodinka, Fecko, Němeček. Přenos a rozvod el. energie. SNTL, 1989.
-
Kolcun, Michal; Haller, Rainer; Mühlbacher, Jan. Mathematical analysis of electrical networks. 1. vyd. Praha : BEN - technická literatura, 2004. ISBN 80-7300-098-9.
-
Máslo, Karel a kolektiv. Řízení a stabilita elektrizační soustavy. Praha : AEM, 2013. ISBN 97880260446711.
-
Mertlová, Jiřina; Hejtmánková, Pavla; Kocmich, Martin. Přenos a rozvod elektrické energie. 1. vyd, dotisk. Plzeň : ZČU, 1997. ISBN 80-7082-222-8.
-
Mertlová, Jiřina; Hejtmánková, Pavla; Tajtl, Tomáš. Teorie přenosu a rozvodu elektrické energie. 1. vyd. Plzeň : Západočeská univerzita, 2004. ISBN 80-7043-307-8.
-
Natarajan, Ramasamy. Power system capacitors. Boca Raton : Taylor & Francis, 2005. ISBN 1-57444-710-6.
-
Pansini, Anthony J. Power transmission and distribution. 2nd ed. Lilburn : Fairmont Press, 2005. ISBN 0-8493-5034-4.
-
Štroblová, M. Elektroenergetika - Podklady pro cvičení. ZČU, 1998.
-
Tlustý Josef. Monitorování, řízení a chránění elektrizačních soustav. Praha, 2011. ISBN 978-80-01-04940-2.
-
Tlustý, Josef; Švec, Jan; Bannert, Petr; Brettschneider, Zbyněk; Kocur, Zbyněk; Mareček, Petr; Müller, Zdeněk; Sýkora, Tomáš. Návrh a rozvoj elektroenergetických sítí. Praha, 2011. ISBN 978-80-01-04939-6.
-
Toman, Petr; Drápela, Jiří; Mišák, Stanislav; Orságová, Jaroslava; Paar, Martin; Topolánek, David. Provoz distribučních soustav. Praha, 2011. ISBN 978-80-01-04935-8.
-
Weedy, Birron Mathew; Cory, B. J. Electric power systems. 4th ed. Chichester : John Wiley & Sons, 1998. ISBN 0-471-97677-6.
|