Lecturer(s)
|
-
Havel René, doc. PhDr. Ph.D.
-
Sýkorová Jiřina, Mgr. Ph.D.
|
Course content
|
1. Introduction to GIS, familiarization with ArcGIS, data types, data sources, coordinate systems. 2. Collection of spatial data in terrain, demonstration of equipment and the principles of its use. 3. Processing aerial images - georeferencing, rectification. 4. Aerial laser scanning (LiDAR) - data formats, processing, outputs, basic visualization algorithms (hillshade; slope; contours). 5. Geodatabase - creation, management, input data types. 6. Creation of output map products (inserting a scale, north arrow, colouring, legend, etc.). 7. Basic analytical procedures in ArcGIS (analysis of visibility, gradient, distance from watercourses). 8. Spatial analyses, ArcGIS online - possibilities of publishing maps and creating map portals.
|
Learning activities and teaching methods
|
- Contact hours
- 39 hours per semester
- Preparation for an examination (30-60)
- 45 hours per semester
- Graduate study programme term essay (40-50)
- 20 hours per semester
|
prerequisite |
---|
Knowledge |
---|
To summarize current archaeological methods |
Skills |
---|
To read and to understand a scientific text in Czech and English |
To use adequate terminology in Czech |
To understand a scientifically structured lecture |
learning outcomes |
---|
Knowledge |
---|
To summarize the issue of spatial data acquisition in archeology |
To summarize the issue of spatial data presentation |
To summarize the issue of the use of GIS in archeology |
Skills |
---|
To demonstrate the processing of different types of spatial data on datasets |
To create a digital terrain model |
To create a map with professional content |
teaching methods |
---|
Knowledge |
---|
Lecture with visual aids |
Self-study of literature |
Multimedia supported teaching |
Skills |
---|
Task-based study method |
Practicum |
assessment methods |
---|
Knowledge |
---|
Combined exam |
Skills |
---|
Seminar work |
Recommended literature
|
-
Břehovský, Martin; Jedlička, Karel; Šíma, Jiří. Úvod do geografických informačních systémů : přednáškové texty. [Plzeň] : [Západočeská univerzita], 2003.
-
DONEUS, M. - BRIESE, C. - FERA, M. - JANNER, M. Archaeological prospection of forested areas using full-waveform airborne laser scanning.. Journal of Archaeological Science 35(4), 882-893, 2008.
-
DONEUS, M. Openness as visualization technique for interpretative mapping of airborne lidar derived digital terrain models. Remote Sensing 5(12), 6427-6442, 2013.
-
Geletič, Jan. Úvod do ArcGIS 10. Olomouc : Univerzita Palackého v Olomouci, 2013. ISBN 978-80-244-3390-5.
-
Gojda, Martin; John, Jan. Archeologie a letecké laserové skenování krajiny = Archeology and airborne laser scanning of the lanscape. Plzeň : Západočeská univerzita, Filozofická fakulta, Katedra archeologie, 2013. ISBN 978-80-261-0194-9.
-
Matoušková, Eva; Starková, Lenka; Pavelka, Karel,; Nováček, Karel,; Šedina, Jaroslav; Faltýnová, Martina; Housarová, Eliška. Using remotely sensed data for documentation of archaeological sites in Northeastern Mesopotamia. 23rd International Archives of the Photogrammetry. 2016.
-
Opitz, Rachel S.; Cowley, David C. Interpreting archaeological topography : airborne laser scanning, 3D data and ground observation. Oxford : Oxbow Books, 2013. ISBN 978-1-84217-516-3.
-
RISB?l, O. - BRIESE, C. - DONEUS, M., - NESBAKKEN, A. Monitoring cultural heritage by comparing DEMs derived from historical aerial photographs and airborne laser scanning,. Journal of Cultural Heritage 16(2), 202-209. 2015.
-
RISB?L, O., GUSTAVSEN, L. LiDAR from drones employed for mapping archaeology-Potential, benefits and challenges. Archaeological Prospection. https://doi.org/10.1002/arp.1712. 2018.
-
STARKOVÁ, L. Využití leteckého laserového skenování na příkladu mapování a dokumentace zaniklých vesnic středověkého a novověkého charakteru v Čechách In: Gojda, M. - John, J.: Archeologie a letecké laserové skenování krajiny. Fakulta filozofická, Plzeň, 2013. ISBN 978-80-261-0194-9.
-
ŠTULAR, B. - KOKALJ, Ž. - OŠTIR, K. - NUNINGER, L. Visualization of lidar-derived relief models for detection of archaeological features. 2012.
|