Course: Processing of Archaeological Data

» List of faculties » FF » KAR
Course title Processing of Archaeological Data
Course code KAR/DAT
Organizational form of instruction Lecture + Tutorial
Level of course Master
Year of study not specified
Semester Winter
Number of ECTS credits 4
Language of instruction Czech
Status of course unspecified
Form of instruction Face-to-face
Work placements This is not an internship
Recommended optional programme components None
Lecturer(s)
  • Havlín Theodor, Mgr. Ph.D.
  • Sýkorová Jiřina, Mgr. Ph.D.
  • Chládek Tomáš, doc. PhDr. Ph.D.
Course content
1. The character of archaeological data. 2. Typical archaeological databases. 3. Computer archiving systems and analytical software. 4. Spatial analysis in archaeology. 5. Basic descriptive statistics. 6. Exploratory data analysis. 7. Simple statistical tests. 8. Spatial filters and trends. 9. Fuzzy sets. 10. Presentation tips and trics.

Learning activities and teaching methods
Lecture with practical applications, Project-based instruction, Students' portfolio, Individual study, Seminar
  • Graduate study programme term essay (40-50) - 34 hours per semester
  • Presentation preparation (report) (1-10) - 6 hours per semester
  • Contact hours - 39 hours per semester
  • Individual project (40) - 25 hours per semester
prerequisite
Knowledge
To describe basic data sources in current archaeology
Skills
To read and to understand a scientific text in Czech/English
To use adequate terminology in Czech
To use electronic information sources
To have user level PC skills
learning outcomes
Knowledge
To specify the diversity of data processing in archaeology and other humanities
To summarize methods used for acquiring digital data, and the options of their processing in humanities-oriented research
To describe the issues of vagueness in humanities; fuzzy sets and its processing in humanities-oriented research
Skills
To use and to design advanced database systems
To use advanced geographical information systems
To use correlation and factor analyses
teaching methods
Knowledge
Seminar
Project-based instruction
Individual study
Students' portfolio
Interactive lecture
assessment methods
Oral exam
Recommended literature
  • Baxter, Michael John. Statistics in archaeology. London : Arnold, 2003. ISBN 0-340-76299-3.
  • Clarke, David L. Analytical archaeology. London : Methuen, 1968.
  • Hendl, Jan. Přehled statistických metod zpracování dat : analýza a metaanalýza dat. Praha : Portál, 2004. ISBN 80-7178-820-1.
  • Chamberlain, Andrew T. Demography in archaeology. Cambridge ; Cambridge University Press, 2006. ISBN 0-521-59651-3.
  • Ihm, Peter; Lüning, Jens. Statistik in der Archäologie : probleme der Anwendung, allgemeine Methoden, Seriation und Klassifikation. Köln : Rheinland-Verlag, 1978. ISBN 3-7927-0427-7.
  • Lock, Gary. Using computers in archaeology : towards virtual pasts. London : Routledge, 2003. ISBN 0-415-16770-1.
  • Malina, Jaroslav. Metody deskripce, klasifikace a statistiky v petroarcheologii. Vyd. 1. Brno : Univerzita J. E. Purkyně, 1976.
  • Malina, Jaroslav. System of analytical archaeography. Praha : Academia, 1977.
  • McPherron, Shannon P.; Dibble, Harold Lewis. Using computers in archaeology : a practical guide. Boston : McGraw-Hill/Mayfield, 2002. ISBN 0-7674-1735-6.
  • Neustupný, Evžen. Metoda archeologie. Plzeň : Aleš Čeněk, 2007. ISBN 978-80-7380-075-8.
  • Neustupný, Evžen. Poznámky k pravěké sídlištní keramice. Praha Archeologický ústav AV ČR, 1996.
  • Neustupný, Evžen. Vektorová syntéza sídlištní keramiky - Vector synthesis of finds from settlement sites. Archeologické rozhledy. Praha Archeologický ústav ČSAV, 1979.
  • Shennan, Stephen. Quantifying archaeology. Edinburgh : Edinburgh University Press, 1997. ISBN 0-7486-0791-9.
  • Šmejda, Ladislav. Hlavní osy variability pohřebního ritu na lokalitě z mladšího eneolitu a starší doby bronzové u Holešova, okr. Kroměříž. Plzeň Aleš Čeněk, 2003. ISBN 80-86473-63-5.


Study plans that include the course
Faculty Study plan (Version) Category of Branch/Specialization Recommended year of study Recommended semester