Lecturer(s)
|
-
Císařová Alena, PhDr. Ph.D.
|
Course content
|
1. Basic inductive techniques, inductive teaching strategies. 2. Didactics of mathematics education as a scientific discipline, tasks and aims of math education 3. Cognitive proces in mathematics, math education according to grades and types of schools 4. Preparation for teaching and learning 5. Stimulating teaching strategies in mathematics (problem solving, games), stimulating moments in tuition 6. Evaluation and marking in mathematics 7. Classroom observation - reflection - motivation, marking and assessment of pupils during classroom observation, used teaching strategies 8. Concepts, concept development, categorization of concepts 9. Definitions and types of them, mistakes in definitions 10. Statements and their proofs in school mathematics 11. Teaching and learning mathematics as a leisure aktivity 12. Teaching and learning mathematics in history
|
Learning activities and teaching methods
|
Interactive lecture, Lecture supplemented with a discussion, Instruction based on dialogue, Skills demonstration, Lecture, Lecture with visual aids, Seminar
- Preparation for comprehensive test (10-40)
- 16 hours per semester
- Contact hours
- 26 hours per semester
- Presentation preparation (report) (1-10)
- 10 hours per semester
|
prerequisite |
---|
Knowledge |
---|
have knowledge corresponding to the subjects for the state bachelor's examination in Mathematics with a focus on education |
Skills |
---|
to apply knowledge and skills corresponding to the subjects for the state bachelor's examination in Mathematics with a focus on education |
Competences |
---|
N/A |
learning outcomes |
---|
Knowledge |
---|
distinguish between inductive and deductive teaching |
to classify the topics to be taught in each year group |
determine the content and scope of basic mathematical concepts |
Skills |
---|
use inductive methods to explain new concepts |
use activating elements in teaching |
distinguish between propositions and statements of a mathematical theorem |
Competences |
---|
N/A |
prepare for class |
teaching methods |
---|
Knowledge |
---|
Lecture |
Lecture with visual aids |
Self-study of literature |
One-to-One tutorial |
Skills |
---|
Seminar classes |
Students' portfolio |
Competences |
---|
Seminar |
assessment methods |
---|
Knowledge |
---|
Test |
Individual presentation at a seminar |
Continuous assessment |
Skills |
---|
Skills demonstration during practicum |
Individual presentation at a seminar |
Self-evaluation |
Competences |
---|
Test |
Recommended literature
|
-
RVP, učebnice, metodické příručky a sbírky úloh pro základní školy a nižší stupeň gymnázií.
-
Hejný, Milan; Novotná, Jarmila; Stehlíková, Naďa. Dvacet pět kapitol z didaktiky matematiky. Praha : Pedagogická fakulta UK, 2004. ISBN 80-7290-189-3.
-
Květoň, P., Ott, M., Vavroš, M. Metodika výuky matematiky na 2. stupni základních škol a středních školách z pohledu pedagogické praxe - náměty pro začínajícího učitele. Ostrava, 2010. ISBN 978-80-7368-888-2.
-
Mikulčák, J. Nástin dějin vzdělávání v matematice (a také školy) v českých zemích do roku 1918. Praha: Matfyzpress, 2010. ISBN 978-807-3781-125.
-
Odvárko, Oldřich; Kadleček, Jiří. Přehled matematiky : pro základní školy a víceletá gymnázia. 1. vyd. Praha : Prometheus, 2000. ISBN 80-7196-276-7.
-
Polák, Josef. Didaktika matematiky: Jak učit matematiku zajímavě a užitečně. II. část. Obecná didaktika matematiky.. Plzeň : Fraus, 2016. ISBN 978-80-7489-326-1.
-
Vondrová, N., Rendl, M. Kritická místa matematiky základní školy v řešení žáků. Praha, 2015. ISBN 978-80-246-3234-6.
|