|
Lecturer(s)
|
-
Hora Jan, PhDr. Ph.D.
-
Hlína Jakub, Mgr.
|
|
Course content
|
1. Mathematica - introduction to the environment 2. Mathematica - expressions , constants and variables 3. Mathematica - expressions, constants and variables 4. Mathematica - Linear Algebra 5. Mathematica - Linear Algebra 6. Mathematica - 2D and 3D graphs 7. Mathematica - 2D and 3D graphs 8. Mathematica - Differential Calculus 9. Mathematica - Programming 10. Mathematica - programming 11. Mathematica - contexts, modules 12. Mathematica - contexts, modules and packages
|
|
Learning activities and teaching methods
|
Lecture with practical applications, Individual study, Lecture, Practicum
- Preparation for formative assessments (2-20)
- 40 hours per semester
- Contact hours
- 39 hours per semester
- Undergraduate study programme term essay (20-40)
- 40 hours per semester
|
| prerequisite |
|---|
| Knowledge |
|---|
| have knowledge of basic mathematical analysis, linear algebra and discrete mathematics |
| Skills |
|---|
| solve simple problems of mathematical analysis, linear algebra and discrete mathematics |
| create and implement a simple algorithm for a problem |
| Competences |
|---|
| N/A |
| N/A |
| N/A |
| N/A |
| learning outcomes |
|---|
| Knowledge |
|---|
| learn to create simple algorithms in Mathematica |
| describe basic linear algebra procedures |
| name basic software for mathematics |
| Skills |
|---|
| work with a defined part of Mathematica |
| algorithmize tasks and perform them in Mathematica |
| create their own auxiliary functions and procedures for easier and simpler application of the software in mathematics |
| solve mathematical analysis tasks - derivation, integration of functions and their applications |
| Competences |
|---|
| N/A |
| teaching methods |
|---|
| Knowledge |
|---|
| Lecture |
| Practicum |
| Individual study |
| Interactive lecture |
| Na přednášce získá student základní postupy při řešení úloh v prostředí Mathematica V průběhu přednášky jsou demostrovány úlohy s ukázkami jejich řešení pomocí prostředků programu |
| Skills |
|---|
| V průběhu semináře jsou řešeny komplikovanější úlohy a prováděn jejich komplexní analýza |
| Seminar |
| Lecture |
| Individual study |
| Interactive lecture |
| Competences |
|---|
| Studenti své seminární práce upravují tak, aby získali kladné hodnocení |
| Individual study |
| assessment methods |
|---|
| Knowledge |
|---|
| Test |
| Seminar work |
| Individual presentation at a seminar |
| student úspěšně absolvujuje písemný test - aspoň 66 bodů z celkově maximálně 100 bodů student řeší problematiku matematického modelu a jeho zpracování |
| Skills |
|---|
| student úspěšně absolvujuje písemný test - aspoň 66 bodů z celkově maximálně 100 bodů student řeší problematiku matematického modelu a jeho zpracování |
| Test |
| Seminar work |
| Individual presentation at a seminar |
| Competences |
|---|
| the student successfully completes a seminar paper on the creation of a mathematical model and its implementation in Wolfram |
| Self-evaluation |
|
Recommended literature
|
-
Michael Trott. The Mathematica GuideBook. 2004. ISBN 0-387-94282-3.
-
Wellin, Paul R.; Gaylord, Richard J.; Kamin, Samuel N. An introduction to programming with Mathematica. 3rd ed. Cambridge : Cambridge University Press, 2005. ISBN 0-521-84678-1.
|