Course: Science methodology and data processing

» List of faculties » FZS » KFE
Course title Science methodology and data processing
Course code KFE/MVZD
Organizational form of instruction Lecture + Seminary
Level of course Master
Year of study not specified
Semester Winter
Number of ECTS credits 5
Language of instruction Czech
Status of course unspecified
Form of instruction Face-to-face
Work placements This is not an internship
Recommended optional programme components None
Lecturer(s)
  • Horpeniak Radek, Doc. MUDr. Ph.D., MBA
  • Vorel Milan, Mgr. et Mgr. Ph.D., MBA
  • Žejdl Vít, PhDr. Ph.D.
Course content
Lectures 1. Basic concepts of scientific research practice - paradigm, axiom, postulate, doctrine, dogma, premise, causality. 2. EBP - methodology and methods. Historical and theoretical basis for the use of quantitative research methods and statistics in the scientific-research work of a physiotherapist. Data file structure for statistical analysis. 3. Quantification and stratification of statistical features. Data typology and categorization according to degree of quantification. 4. Descriptive statistics - calculation of empirical characteristics, principles of graphical expression of outputs, selection of a suitable method of descriptive data analysis, method of interpretation of outputs. 5. Reliability and validity of the research instrument based on the empirical characteristics of descriptive statistics. Selection errors. Confidence level, confidence intervals. 6. Principles of probability (random phenomenon), p-value. Interpretation of statistical testing results. Basic data randomization procedures and statistical test power analysis procedures. Application of the principle of probability in the methods of Bayesian statistics. 7. Principles of inductive-inferential statistics and the formulation of statistical hypotheses from objective hypotheses in research topics involving the specifics of the physiotherapist profession. A generally valid statistical hypothesis testing procedure. Assumptions and conditions for the selection and use of correct statistical tests (parametric/non-parametric) to verify the validity of statistical hypotheses. Normality tests. 8. Prerequisites for the use of parametric and non-parametric statistical tests of variability for testing the equality of variances of random-independent samples from the population. 9. Prerequisites for the use of parametric and non-parametric statistical tests on the mean value for one, two or more dependent and independent samples (sets) of data obtained from the physiotherapist's research activity. 10. Continuity correction and multiple testing. Principles of exclusion of extreme values using statistical tests. Interpretation of the results of the used quantitative research methods (inductive statistics). 11. Statistical tests of the mean for more than two samples with more than one factor-independent statistical sign. Types of effect and its size-standardized, non-standardized. 12. Procedures, parametric and non-parametric statistical tests and interpretation of factor analysis results. Related Terminology. Examples in the context of a physiotherapist's research activity. 13. Chi (square) goodness-of-fit tests (for paired and unpaired data) and a test of independence. The suitability of applying different statistical methods to different types of data. 14. Processing of large data files. Calculations of epidemiological indicators. 15. Ethical principles and principles of scientific and research work (including publication ethics). Basic principles of bioethics. Ethical codes and standards for the healthcare professional in the context of research conducted by obtaining data from living subjects. Related documents and legislative framework in the process of approval of the research plan by the ethics committee. Clinical data anonymization procedures. Seminars - thematically follow the topics of the lectures with practical application. Odeslat zpětnou vazbu

Learning activities and teaching methods
  • Contact hours - 60 hours per semester
  • Preparation for comprehensive test (10-40) - 20 hours per semester
  • Presentation preparation (report) (1-10) - 8 hours per semester
  • Preparation for an examination (30-60) - 40 hours per semester
prerequisite
Knowledge
explain the differences between quantitative and qualitative types of research
Skills
suggest an appropriate type of research
Competences
N/A
learning outcomes
Knowledge
defines the structure of the dataset for statistical analysis
assesses the appropriateness of applying different statistical methods to different types of data
chooses correct statistical tests to confirm/refute established hypotheses
Skills
visualizes input data for analysis and interprets these visualizations
identifies appropriate methods of descriptive data analysis
formulates hypotheses of statistical data analysis
interprets the results of statistical evaluation of data
observes the ethical principles and principles of scientific research work
Competences
N/A
teaching methods
Knowledge
Interactive lecture
Skills
Seminar
Task-based study method
Competences
Task-based study method
Seminar
assessment methods
Knowledge
Oral exam
Test
Skills
Individual presentation at a seminar
Competences
Individual presentation at a seminar
Oral exam
Recommended literature
  • BLITZSTEIN, Joseph K a Jessica HWANG. Introduction to probability.. Boca Raton, FL: CRC Press, 2015. ISBN 978-1-4665-7559-2.
  • GÖPFERTOVÁ, Dana. Základy obecné epidemiologie [online]. 1. vyd. Praha: Ústav epidemiologie 2. LF UK, 2019.
  • GURKOVÁ, Elena. Praktický úvod do metodologie výzkumu v ošetřovatelství. 1. vyd.. Olomouc: Univerzita Palackého v Olomouci, 2019. ISBN 978-80-244-5627-0.
  • HAŠKOVCOVÁ, Helena. Lékařská etika. Čtvrté, aktualizované a rozšířené vydání.. Praha : Galén, 2015. ISBN 978-80-7492-204-6.
  • HENDL, Jan. Přehled statistických metod: analýza a metaanalýza dat. Páté, rozšířené vydání.. Praha: Portál, 2015. ISBN 978-80-262-0981-2.
  • HOLČÍK, Jiří, KOMENDA, Martin (eds.) a kol. Matematická biologie: e-learningová učebnice [online: https://portal.matematickabiologie.cz/]. 1. vydání.. Brno: Masarykova univerzita, 2015. ISBN 978-80-210-8095-9.
  • JANOUT, Vladimír a Jana JANOUTOVÁ. Medicína založená na důkazu a klinická epidemiologie [online].. 2021. ISBN 978-80-271-3076-4.
  • OCHRANA, František. Metodologie, metody a metodika vědeckého výzkumu.. Praha: Karolinum, 2019. ISBN 978-80-246-4200-0.
  • REITEROVÁ, Eva. Statistika pro nelékařské zdravotnické obory. 1. vyd.. Olomouc: Univerzita Palackého v Olomouci, 2016. ISBN 978-80-244-5082-7.
  • VARKEY, Basil. Principles of clinical ethics and their application to practice. 2020.
  • ZVÁROVÁ, Jana. Základy statistiky pro biomedicínské obory. 2., dopl. vyd.. Praha: Karolinum, 2011. ISBN 978-80-246-1931-6.


Study plans that include the course
Faculty Study plan (Version) Category of Branch/Specialization Recommended year of study Recommended semester