Lecturer(s)
|
-
Nosková Lucie, Mgr. Ph.D.
|
Course content
|
1st Numerical methods for solving equations with one unknown Graphical methods, separation of roots, Newton's method - the method of tangents. 2nd Matrix Basic concepts - matrix, square matrix, equality of matrices, operation with matrices - sum, product of matrix and real number, matrix product, transposed matrix, rank of a matrix - upper triangular matrix, determining rank. 3rd Systems of linear equations Entry of linear equations system, solvability of linear equations system, Gauss method. 4th Functions of several real variables Partial derivates, total differential of a function of two variables.
|
Learning activities and teaching methods
|
Seminar
- Preparation for comprehensive test (10-40)
- 20 hours per semester
- Contact hours
- 13 hours per semester
|
prerequisite |
---|
Knowledge |
---|
Knowledge of basic mathematical operations, modification of algebraic expression, solving of equations and inequations. Basic knowledge of mathematical functions. Basic knowledge of derivation of function. |
to describe the basic functions, their properties, the course |
characterize derivative function |
Skills |
---|
edit algebraic expressions |
solve equations and inequalities |
apply rules for derivation of elementary functions |
learning outcomes |
---|
Knowledge |
---|
to describe selected numerical methods of solving equations |
to explain the term matrix |
Skills |
---|
solve the equation by one of the unknown numerical methods |
master basic matrix operations |
to solve systems of linear equations |
determine the total differential function of the two real variables |
teaching methods |
---|
Knowledge |
---|
Seminar |
assessment methods |
---|
Skills demonstration during practicum |
Recommended literature
|
-
HEŘMÁNEK L. a kol. Sbírka příkladů z Matematiky I ve strukturovaném studiu. VŠCHT, Praha, 2008. ISBN 978-80-7080-688-3.
-
KLÍČ A. a kol. Matematika I ve strukturovaném studiu. Praha: VŠCHT, 2007. ISBN 978-80-7080-656-2.
-
Míčka, Jiří. Sbírka příkladů z matematiky. Vyd. 4., přeprac. Praha : Vysoká škola chemicko-technologická, 2002. ISBN 80-7080-484-X.
-
PAVLÍKOVÁ P., SCHMIDT O.. Základy matematiky. VŠCHT, Praha, 2006. ISBN 978-80-7080-615-9.
-
TURZÍK D., DUBCOVÁ M., PAVLÍKOVÁ P. Základy matematiky pro bakaláře. VŠCHT, Praha, 2011. ISBN 978-80-7080-787-3.
|