Lecturer(s)
|
-
Zajíček Daniel, Ing. Mgr. Ph.D.
-
Dongresová Eva, Ing. Ph.D.
-
Gašpařík Adam, doc. RNDr. Ph.D.
-
Průchová Jana, Ing. Ph.D.
-
Štěpánková Andrea, Ing. Ph.D.
|
Course content
|
Empirical research, hypothesis, planing and steps of research Data sources for research, techniques of data gathering Introduction to hypothesis testing, type 1 and type 2 errors, interpretation of results, test validity and reliability Normality tests (chí-square, Liliefors test, graphical tests,), independence in contingency table, Chi-square test for independence. One-sample tests (mean, variance, standard deviation) relation to interval estimation Two-sample tests (means equity, variances equity, relative frequncies equity, paired two-sample test) One factor ANOVA Fundamentals of regression and correlation analysis.
|
Learning activities and teaching methods
|
Lecture with practical applications, Individual study, Self-study of literature, Practicum
- unspecified
- 22 hours per semester
- Preparation for an examination (30-60)
- 30 hours per semester
- Contact hours
- 52 hours per semester
|
prerequisite |
---|
Knowledge |
---|
apply basic knowledge of statistic (KEM/STA). |
Skills |
---|
determine characteristics of statistics file. |
determine quantiles of random variable. |
work in MS Excel. |
Competences |
---|
N/A |
N/A |
N/A |
N/A |
learning outcomes |
---|
Knowledge |
---|
explain and use methods of real data processing. |
use software for data processing. |
make interpretation and prezentation of data. |
Skills |
---|
assemble the research plan. |
assemble questionaire for research. |
make the suitbale random selection from population. |
formulate research hypothesis and statisticaly evaluate them. |
determkine distribution parameters using statistical test. |
realize the test of mean equivalence for two or more samples. |
decide about normality of data. |
realize chi square in contingency table. |
use statistical software for analyzing and statistical evaluation of data. |
Competences |
---|
N/A |
N/A |
teaching methods |
---|
Knowledge |
---|
Practicum |
Self-study of literature |
Individual study |
Interactive lecture |
E-learning |
Task-based study method |
Skills |
---|
Practicum |
Individual study |
Discussion |
Project-based instruction |
E-learning |
Task-based study method |
Competences |
---|
Lecture supplemented with a discussion |
Individual study |
Task-based study method |
E-learning |
assessment methods |
---|
Knowledge |
---|
Written exam |
Test |
Seminar work |
Practical exam |
Skills |
---|
Skills demonstration during practicum |
Practical exam |
Project |
Seminar work |
Competences |
---|
Practical exam |
Project |
Recommended literature
|
-
Box, E. P. George, Jenkins, M. Gwilym, Reinsel, C. Gregory. Time Series Analysis: Forecasting and Control. WILEY, 2008. ISBN 978-0-470-27284-8.
-
Hair, F. Joseph, Black, C. William, Babin, J. Barry, Anderson E. Rolph. Multivariate Data Analysis. Prentice-Hall, 2010. ISBN 978-0-13-813263.
-
Hendl, Jan. Přehled statistických metod zpracování dat : analýza a metaanalýza dat. Vyd. 2., opr. Praha : Portál, 2006. ISBN 80-7367-123-9.
-
Pecáková, Iva. Statistika v terénních průzkumech. 2., dopl. vyd. Praha : Professional Publishing, 2011. ISBN 978-80-7431-039-3.
-
Řezanková, Hana. Analýza dat z dotazníkových šetření. 3., aktualiz. vyd. Praha : Professional Publishing, 2011. ISBN 978-80-7431-062-1.
-
Řezanková, Hana. Analýza kategoriálních dat. Vyd. 1. Praha : Oeconomica, 2005. ISBN 80-245-0926-1.
|