Lecturer(s)
|
-
Kozák Jan, Ing. Ph.D.
-
Prokop Ondřej, Ing.
-
Jandošová Nicole Meta, Ing.
-
Hanzl Jiří, Ing. Ph.D.
-
Holubec Lukáš, Ing.
-
Sládečko Bohumil, Ing.
-
Berka Milan, doc. Ing. Ph.D.
-
Frémund Václav, Ing. Ph.D.
-
Švejzar Ondřej, Ing. Ph.D.
-
Baloun Ladislav, Ing. Ph.D.
-
Čejka Petr, Ing. Ph.D.
-
Louda Emanuel, Ing.
-
Čejka Miroslav, Ing.
-
Borusík David, Ing. et Ing. Ph.D.
-
Černá Šárka, Ing.
-
Nováček Pavel, Ing. Ph.D.
-
Blecha Karel, Ing. Ph.D.
-
Jiříček Petr, Ing. Ph.D.
-
Kocourek Martin, Ing.
|
Course content
|
Content of lectures: 1. Passive components - resistor, capacitor, coil, transformer, thermistor, varistor, crystal, lightning arrester 2. Semiconductor physics - simple and compound semiconductors, intrinsic semiconductors, semiconductor currents, mobility of carriers, recombination, Hall effect 3. Semiconductor physics - homogeneous and heterogeneous PN junction, depleted area, Debye's length, band energy model, PN junction capacity 4. Physics of semiconductors - materials and structures for power elements, SiC, GaN, manufacturing technology, electrical properties, temperature dependence 5. Semiconductor diodes - varicap, rectifier diode, Zener diode, avalanche diode, tunnel diode, Schottky diode, suppressor diodes, PN junction breakdowns 6. Bipolar transistors - principle of operation, currents in transistor, Early's effect, current amplifier, h-parameters, basic connections, high-frequency properties, noises 7. Unipolar transistors - MISFET, JFET, MeSFET, NMOS, PMOS, CMOS 8. Components with multiple PN junctions - switching semiconductor components - thyristor, diac, triac 9. Power electronics - IGBT, VMOSFET, power diodes, power thyristors 10. Optoelectronics - optical fibers - optical fiber attenuation, Snell's law, unimodal fibers, gradient fibers, step index fibers, modal and chromatic dispersion, manufacturing technology 11. Optoelectronics - electro-optical convertors - principle of luminescence, LED, laser diode, LCD 12. Optoelectronics - optical-electrical convertors - photoresistor, photodiode, phototransistor, solar cells, optron 13. Complex semiconductor structures - amplification effects, switching properties, frequency characteristics, production technology, integration limits Content of laboratory: 1. Characteristics measurement of optoelectronic elements 2. Measurement of static and dynamic characteristics of diodes 3. Temperature dependencies measurement of semiconductors 4. Hall's probe 5. Measurement of rectifiers with semiconductor diodes 6. Voltage regulator with Zener diode 7. Measurement of thyristor I-V characteristics 8. Measurement of I-V characteristics of bipolar and unipolar transistors 9. Basic parameters measurements of power elements 10. Semiconductor switching elements 11. Frequency dependence of semiconductor structures 12. Amplification effects of semiconductor structures
|
Learning activities and teaching methods
|
- Preparation for laboratory testing; outcome analysis (1-8)
- 4 hours per semester
- Preparation for an examination (30-60)
- 50 hours per semester
- Preparation for comprehensive test (10-40)
- 12 hours per semester
- Contact hours
- 65 hours per semester
- unspecified
- 45 hours per semester
- Contact hours
- 20 hours per semester
|
prerequisite |
---|
Knowledge |
---|
to identify basic electronic components |
Skills |
---|
to connect a simple electrical circuit |
to operate simple measurement devices |
to measure basic electrical quantities |
to prepare a report from laboratory measurements |
to calculate the values of the electrical quantities |
to present measured values in charts |
Competences |
---|
N/A |
N/A |
N/A |
learning outcomes |
---|
Knowledge |
---|
to identify important parameters of passive and active electronic components |
to describe the behavior of electronic components in the circuit connection |
to clarify important phenomena for optoelectronic components |
to clarify important phenomena, especially for semiconductor materials and components |
to explain the physical principle of basic electronic components |
Skills |
---|
to apply theoretical knowledge in praxes |
to measure basic parameters of electronic components |
to recognize basic electronic components |
to create a professional report from the measurements |
Competences |
---|
N/A |
N/A |
teaching methods |
---|
Knowledge |
---|
Lecture |
Laboratory work |
Self-study of literature |
One-to-One tutorial |
Skills |
---|
Lecture |
Laboratory work |
Individual study |
Competences |
---|
Lecture |
Laboratory work |
assessment methods |
---|
Knowledge |
---|
Oral exam |
Written exam |
Test |
Individual presentation at a seminar |
Skills |
---|
Skills demonstration during practicum |
Individual presentation at a seminar |
Competences |
---|
Skills demonstration during practicum |
Oral exam |
Written exam |
Recommended literature
|
-
Foit, Julius; Hudec, Lubomír. Základy elektroniky. Vyd. 1. Praha : České vysoké učení technické v Praze, 2009. ISBN 978-80-01-04236-6.
-
Jerhot, Jaroslav. Elektronické součástky a zesilovače. 1. vyd. Plzeň, VŠSE, 1980.
-
Kasap, S. O. Principles of electronic materials and devices. 3rd ed. Boston : McGraw-Hill, 2006. ISBN 0-07-124458-1.
-
Musil, V. Elektronické součástky. VUT Brno, 2005.
-
Schroder, Dieter K. Semiconductor material and device characterization. 3rd ed. Hoboken : John Wiley & Sons, 2006. ISBN 0-471-73906-5.
-
Sze, S. M.; Ng, Kwok K. Physics of semiconductor devices. 3th ed. Hoboken : Wiley-Interscience, 2007. ISBN 978-0-471-14323-9.
-
Vaníček, František. Elektronické součástky : principy, vlastnosti, modely. Vyd. 2. Praha : Vydavatelství ČVUT, 2004. ISBN 80-01-03112-8.
-
Vobecký, Jan; Záhlava, Vít. Elektronika : součástky a obvody, principy a příklady. 3., rozš. vyd. Praha : Grada Publishing, 2005. ISBN 80-247-1241-5.
|