|
Lecturer(s)
|
-
Landa Radomír, doc. Ing. Ph.D.
-
Beneš Josef, Ing. Ph.D.
-
Janků Michal, prof. Ing. Ph.D.
-
Poór Daniel, doc. Ing. Ph.D.
-
Klímek Miroslav, Ing. Ph.D.
-
Otisk Jan, Ing. Ph.D.
-
Irber Václav, doc. Ing. Ph.D.
-
Dvořák František, Ing. Ph.D.
-
Volf Tomáš, Ing. Ph.D.
-
Kořený Jaromír, Ing. Ph.D.
-
Bureš Aleš, Ing. Ph.D.
-
Chlad Zdeněk, Ing. Ph.D.
-
Kutlák Robert, Ing.
-
Hájek Jiří, Ing. Ph.D.
-
Špicar Oldřich, Ing. Ph.D.
-
Beneš Otomar, Ing.
-
Vevera Miloslav, doc. Ing. Ph.D.
-
Čengery Jiří, Ing. Ph.D.
|
|
Course content
|
1. Space vector theory and transforms 2. Voltage-source inverters and their control - mainly carrier-based PWM and space-vector PWM 3. Voltage-source active rectifiers and their control - mainly control strategies in different reference frames 4. AC/AC converters - indirect and direct (matrix) converters 5. Resonant converters - soft-switching theory, fundamental power circuit configuraitons of resonant converters 6. Multilevel converters - part I - T-converter, NPC, ANPC 7. Multilevel converters - part II - FLC, cascaded converters and special topologies 8. General ac machine theory, induction machine models (including models necessary for IM drive control) 9. Control of induction motor drives - part I - mainly FOC 10. Control of induction motor drives - part II - mainly DSC, DTC 11. Models of synchronous machines - model of general synchronous motor and desription of the model for particular types of synchronous motors 12. Control of synchronous motor drives - mainly FOC and optimal drive control 13. Advanced control of power electronics converters and ac motor drives
|
|
Learning activities and teaching methods
|
Laboratory work, Lecture
- Practical training (number of hours)
- 26 hours per semester
- Contact hours
- 39 hours per semester
- Preparation for an examination (30-60)
- 50 hours per semester
- Preparation for formative assessments (2-20)
- 15 hours per semester
|
| prerequisite |
|---|
| Knowledge |
|---|
| utilize the electromagnetic filed and circuits theory |
| utilize the electrical machines theory |
| utilize basic knowledge of the control theory |
| utilize basic knowledge of the power electronics |
| utilize basic knowledge of the electric drives |
| Skills |
|---|
| utilize the knowledge of the mathematics, particularly solution of ordinary differential equations |
| utilize the simulation tools, mainly MATLAB |
| describe the function of basic power electronics converters |
| describe the function of induction machine and synchronous machines |
| utilize PID controllers and basic control theory |
| Competences |
|---|
| N/A |
| learning outcomes |
|---|
| Knowledge |
|---|
| describe in detail the functionality of inverters, active rectifiers, ac/ac converters and multilevel converters and explain their control |
| describe the control of induction machine drives |
| describe the control of synchronous machine drives |
| utilize advanced control startegies of power electronics converters and ac motor drives |
| design simulation models of power electronics converters and electric drives |
| Skills |
|---|
| describe and design control of inverters, active rectifiers, ac/ac converters and multilevel converters |
| design the control of induction machine drives |
| design the control of synchronous machine drives |
| utilize simulation models and simulate the behaviour of power electronics converters and electric drives under both steady-state and transient conditions |
| Competences |
|---|
| N/A |
| teaching methods |
|---|
| Knowledge |
|---|
| Lecture |
| Laboratory work |
| Practicum |
| Skills |
|---|
| Lecture |
| Laboratory work |
| Practicum |
| Individual study |
| Competences |
|---|
| Lecture |
| Laboratory work |
| Practicum |
| Individual study |
| assessment methods |
|---|
| Knowledge |
|---|
| Combined exam |
| Skills demonstration during practicum |
| Test |
| Skills |
|---|
| Combined exam |
| Skills demonstration during practicum |
| Test |
| Competences |
|---|
| Combined exam |
|
Recommended literature
|
-
Brandštetter, P. Střídavé regulované pohony - moderní způsoby řízení. TU Ostrava, 1999.
-
Geyer, Tobias. Model predictive control of high power converters and industrial drives. 2016. ISBN 978-1-119-01086-9.
-
Javůrek, Jiří. Regulace moderních elektrických pohonů. 1. vyd. Praha : Grada Publishing, 2003. ISBN 80-247-0507-9.
-
Kazmierkowski, Marian P.; Krishnan, R.; Blaabjerg, Frede. Control in power electronics : selected problems ; editors Marian P. Kazmierkowski, R. Krishnan, Frede Blaabjerg. [San Diego] : Academic Press, 2002. ISBN 0-12-402772-5.
-
Novotny, D. W.; Lipo, T. A. Vector control and dynamics of ac drives. 1st pub. Oxford : Clarendon Press, 1996. ISBN 0-19-856439-2.
-
Trzynadlowski, Andrzej M. Control of induction motors. San Diego : Academic Press, 2001. ISBN 0-12-701510-8.
-
Vas, P. Sensorless Vector and Direct Torque Control.. Oxford University Press, New York,, 1998.
-
Vondrášek, František; Glasberger, Tomáš,; Fořt, Jiří,; Jára, Martin. Výkonová elektronika. Svazek 3, Měniče s vlastní komutací a bez komutace.. 3., rozšířené vydání. 2017. ISBN 978-80-261-0688-3.
-
Zeman K., Peroutka Z., Janda M. Automatická regulace pohonů s asynchronními motory. ZČU Plzeň, 2004.
|