Course: Solar and Wind Energy

« Back
Course title Solar and Wind Energy
Course code KKE/ESV
Organizational form of instruction Lecture + Tutorial
Level of course Bachelor
Year of study not specified
Semester Summer
Number of ECTS credits 4
Language of instruction Czech, English
Status of course Optional
Form of instruction Face-to-face
Work placements This is not an internship
Recommended optional programme components None
Course availability The course is available to visiting students
Lecturer(s)
  • Soukup Petr, Ing. Ph.D.
  • Alimzhanov František, Ing.
Course content
In line with the REPowerEU plan, the European Union has set a target of achieving a share of renewables in the Union's gross final energy consumption of at least 42.5% in 2030 compared to 23% in 2022. REPowerEU further states that wind and solar energy will be prioritised to meet this target. This expanding market for solar and wind technologies is an ideal opportunity for the next generation of engineers. However, the efficient and sustainable deployment of renewables depends on the development of technologies for smart grid management and off-peak energy storage, thus eliminating to some extent the intermittent nature of wind and solar. This course provides a broader introduction to solar and wind energy technologies, including the design, construction and operation of individual technical installations, the principles of integrating these sources into the energy system and, last but not least, measures on the consumption side in terms of the energy performance of buildings. Topics of lectures: 1. Introduction to renewable sources - energy system, types of sources, load diagram, energy mix in the Czech Republic and in the world, climate change, potential maps of the use of solar and wind energy, energy policy. 2. Solar energy - thermonuclear fusion, p-p cycle, physical parameters of the Sun, solar spectrum, physics of radiation, radiation of an absolute black body, solar constant, passage of radiation through the Earth's atmosphere and its impact on the horizontal surface. 3. Passive solar systems - solar architecture, energy performance of buildings, low energy and passive building standards, heat transfer coefficient, thermal bridges, etc. 4. Solar thermal systems - photothermal systems, building heating, hot water heating, solar thermal collector technology, heat balance and collector losses, solar systems, thermal storage tanks. 5. Photovoltaic panel technology - introduction to semiconductors, photoelectric effect, materials for PV, production of PV panels, VA characteristics and operating parameters, new generation PV panels. 6. Concentrated Solar Power (CSP) - linear and point concentration, concentrating optics, CSP system efficiency and losses, park CSP plants, tower CSP plants, linear Fresnel reflector, parabolic disks, thermal storage for CSP purposes and suitable thermodynamic cycles. 7. Use of wind energy on Earth - wind formation and planetary air circulation, Beaufort scale and wind measurements, influence of location, distribution of wind rotors, determination of wind motor power and derivation of power coefficient, wind motor speed, buoyancy, aerodynamics of wind turbine blades. 8. Operating characteristics of the wind power plant - control and safety system of the wind power plant, power curve, power control, rotor orientation, rotor rotation and gyroscopic load generation, rotor speed control, environmental impact of the wind power plant. 9. Construction of the wind power plant - concrete foundations, construction and manufacture of the mast, construction and manufacture of rotor blades, construction and manufacture of the power plant hub, construction of the power plant support frame and machine room including internal components. 10. Wind farms - onshore versus offshore systems, wake effect, wind farm layout, substructure for offshore parks, external influences, costs, materials, maintenance, offshore wind power plant design, offshore foundation structures for fixed and floating applications. 11. Integration of wind and solar sources into the energy mix - Smart Grids, smart cities and regions, decentralized local distribution systems. 12. Energy storage - energy storage systems available today or in the near future, pumped storage plants, battery systems, thermal energy storage, etc. 13. Energy storage - future energy storage systems, advanced batteries, CAES systems, P2G technology, high-speed flywheels, supercapacitors, etc.

Learning activities and teaching methods
Lecture supplemented with a discussion, Lecture with practical applications, Multimedia supported teaching
  • Preparation for comprehensive test (10-40) - 30 hours per semester
  • Contact hours - 20 hours per semester
  • Practical training (number of hours) - 10 hours per semester
  • Undergraduate study programme term essay (20-40) - 40 hours per semester
  • unspecified - 4 hours per semester
prerequisite
Knowledge
be familiar with the possibilities of electricity generation
Skills
perform basic mathematical operations
Competences
N/A
N/A
N/A
N/A
learning outcomes
Knowledge
be able to describe at higher level energy sources using solar and wind energy
Skills
to carry out a basic design of specific energy systems, of a solar or wind nature, taking into account the site conditions
be able to propose sustainable integration of solar and wind sources into the power system
Competences
N/A
N/A
N/A
teaching methods
Knowledge
Lecture
Lecture supplemented with a discussion
Practicum
Multimedia supported teaching
Skills
Lecture
Lecture supplemented with a discussion
Practicum
Multimedia supported teaching
Competences
Lecture
Lecture supplemented with a discussion
Practicum
Multimedia supported teaching
assessment methods
Knowledge
Test
Seminar work
Skills
Test
Seminar work
Competences
Test
Seminar work
Recommended literature
  • Benda, Vítězslav. Obnovitelné zdroje energie. Profi Press, 2012. ISBN 9788086726489.
  • Beranovský J., Murtinger K., Tomeš M. Fotovoltaika. 2009. ISBN 978-8-08733301-3.
  • Colin Anderson. Wind Turbines, Theory and Practice. Cambridge University Press, 2020. ISBN 9781108478328.
  • G. N. Tiwari, Arvind Tiwari, Shyam. Handbook of Solar Energy. Springer Science+Business Media Singapore 2016, 2016. ISBN 978-981-10-0805-4.
  • Haselhuhn, Ralf. Fotovoltaika : budovy jako zdroj proudu. 1. české vyd. Ostrava : HEL, 2011. ISBN 978-80-86167-33-6.
  • Haselhuhn, Ralf; Maule, Petr. Fotovoltaické systémy : energetická příručka : pro elektrikáře, techniky, instalatéry, projektanty, architekty, inženýry, energetiky, manažery, stavitele, studenty, učitele, ostatní odborné a profesní soukromé nebo veřejné instituce a zájemce o fotovoltaický obor a energetickou nezávislost. 1. české vydání, rev. 1. 2017. ISBN 978-80-906281-5-1.
  • Jiří Škorpík. Zdroje a transformace energie. Brno : Akademické nakladatelství CERM, s.r.o., 2021. ISBN 978-80-214-5929-8.
  • Mastný, Petr; Drápela, Jiří; Mišák, Stanislav; Macháček, Jan; Ptáček, Michal; Radil, Lukáš; Bartošík, Tomáš; Pavelka, Tomáš. Obnovitelné zdroje elektrické energie. Praha, 2011. ISBN 978-80-01-04937-2.
  • Matuška, Tomáš. Solární zařízení v příkladech. 1. vyd. Praha : Grada, 2013. ISBN 978-80-247-3525-2.
  • Murtinger, Karel; Truxa, Jan. Solární energie pro váš dům. 1. vydání. 2010. ISBN 978-80-251-3241-8.
  • Nick Jenkins, Janaka Ekanayake. Renewable Energy Engineering. Cambridge University Press, 2024. ISBN 9781009295789.
  • Patel, Mukund R. Wind and solar power systems : design, analysis, and operation. 2nd ed. Boca Raton ; CRC Press, 2006. ISBN 0-8493-1570-0.
  • Quaschning, Volker. Obnovitelné zdroje energií. 1. vyd. Praha : Grada Publishing, 2010. ISBN 978-80-247-3250-3.
  • Tywoniak, Jan. Nízkoenergetické domy 3 : nulové, pasivní a další. 1. vyd. Praha : Grada, 2012. ISBN 978-80-247-3832-1.


Study plans that include the course
Faculty Study plan (Version) Category of Branch/Specialization Recommended year of study Recommended semester