Lecturer(s)
|
-
Velemínský Jan, prof. Ing. CSc.
-
Moulis Pavel, Ing. Ph.D.
|
Course content
|
Topics of lectures by weeks: 1st week: Introduction. Balancing equation and flow equations of conservation for mass and momentum following from it. 2nd week: Resumption in flow equation derivation: energy equation and its special forms as Fourier-Kirchhoff´s one and the 1st law of thermodynamics, dissipation. Properties and classification of partial differential equations. 3rd week: Compressible, inviscid, isentropic, steady flow: basic relations, Hugoniot´s theorem, sound velocity as a function of flow velocity, critical, total and maximum state, isentropic equations and parameters of critical state, properties of expansion in a nozzle at various back pressures. 4th week: Compressible flow. Critical flow rate at adiabatic conditions with energy losses. Normal and oblique impact shock. Parameters behind these shock waves. 5th week: Compressible flow. Flow with losses in an adiabatic tube, in labyrinth box. Expansion shock waves of Prandtl-Meyer´s type. 6th week: Vortex flow, rotation operator (curl) applied on movement equation, properties of circulation in inviscid flow, velocity induced by vortex filament. Introduction into velocity boundary layer theory. 7th week: Boundary layer. Subsidiary thicknesses of boundary layer. Separation of boundary layer and wake of bluff bodies. Integral equation of boundary layer, its derivation and analysis. 8th week: Boundary layer. Pohlhausen´s method of velocity profile determination. Laminar and turbulent boundary layer on a plate and slender airfoils. 9th week: Boundary layer equation simplified by Prandtl. Elaborating of flow separation, generation of separating bubbles. Introduction into turbulent flow. Statistic characteristics of turbulence, velocity fluctuations covariances and power spectral densities. Measurement of fluctuations by hot wire anemometer. 10th week: Turbulent flow. Time averaging of basic differential equations, Van Driest´s and Reynolds´ equations. Turbulent shear stress, turbulent viscosity, turbulent heat flux, necessity of turbulence models introduction. Theory of mixing length, logarithmic law of the wall, universal velocity distribution. 11th week: Turbulent flow. Exact turbulent transport equations and principles of their modelling. Some turbulence models: Reynolds Stress Model (RSM), K-eps, K-omega, Renormalization of Groups RNG K-eps, LES, DES and their properties. 12th week: Flow around airfoils. Lift, drag and torsion coefficients. The tools for increasing the maximal lift: wing flaps and slats, slots, suction of boundary layer, blowing into layer. The wing theory. 13th week: Static and dynamic forces acting on an airfoil. Stability and critical velocity of flight: the divergence of airfoil in bending, flutter in bending and torsion-bending flutter. Topics of computational seminars: 1st week: Introduction in computational dynamics (CFD), computational systems, CFD analyses scheduling. 2nd week: Activation of FLUENT and GAMBIT, possibilities of pre- and postprocessing, user interface, illustration of examples. 3rd week: Discretization of computational domain, structural and unstructural computational mesh, GAMBIT, solution of classic tasks. 4th week: Types of boundary conditions, physical properties, introduction in using of FLUENT. 5th week: Inviscid, laminar and turbulent flow, divided solver, flow in channel bending. 6th week: Controlling parametres of computation, heat transfer, periodic flow. 7th week: Results processing, visual representation, alphanumeric reports. 8th week: Turbulence modelling, simulation of boundary layers, flow in ejector. 9th week: Coupled solvers, compressible flow in Laval nozzle. 10th week: Adaptation of computational mesh. Flow in turbine blade cascade, outside flow. 11th week: Cases of unsteady flows, flow around bluff body. 12th week: 3-D flows, rotating coordinate system, stream in a fan stage. 13th week: 3-D flows in industrial and research applications, recapitulation.
|
Learning activities and teaching methods
|
Lecture with practical applications, Individual study
- Individual project (40)
- 25 hours per semester
- Contact hours
- 65 hours per semester
- Preparation for an examination (30-60)
- 40 hours per semester
|
prerequisite |
---|
Knowledge |
---|
vysvětlit základní jevy statiky a dynamiky mechaniky tekutin a určit jejich vlastnosti |
znát a popsat jednoduché úlohy výpočtově a experimentálně |
rozumět matematickému popisu principů složitějších problémů proudění, které jsou jádrem komerčních programů v oboru mechanika tekutin a na základě toho fundovaně pracovat a ověřovat pravdivost výsledků |
přenášet metody mechaniky tekutin do příbuzných oborů |
vypočítat základní statistické parametry dat |
vysvětlit základní jevy statiky a dynamiky mechaniky tekutin |
Skills |
---|
používat kancelářský software |
řešit jednoduché praktické příklady z mechaniky tekutin |
learning outcomes |
---|
Knowledge |
---|
porozumět matematickému aparátu, který popisuje laminární nebo turbulentní proudění |
modelovat geometrii řešených prostorových úloh, pokrýt ji výpočtovou sítí, řídit numerický výpočet |
zpracovat výsledky výpočtu pomocí postprocesorového programu |
řešit náročné technické úlohy: nestacionární, stlačitelná proudění, s pohyblivou geometrií |
Skills |
---|
orientovat se v mechanice tekutin, zejména v dynamice tekutin, problematice turbulence a smykových oblastí |
umět správně zvolit matematický model pro danou fyzikální úlohu |
formulovat správně zadání pro matematickou simulaci |
ovládat základní software pro řešení úloh z dynamiky tekutin |
teaching methods |
---|
Knowledge |
---|
Individual study |
Interactive lecture |
assessment methods |
---|
Combined exam |
Individual presentation at a seminar |
Recommended literature
|
-
Manuály Gambit, Fluent, Rampant.
-
Fletcher, Clive A. J. Computational techniques for fluid dynamics 1 : fundamental and general techniques. 2nd ed. Berlin : Springer, 1991. ISBN 3-540-53058-4.
-
Chen, Chin-Jen; Jaw, Shenq-Yuh. Fundamentals of turbulence modeling. [1st ed.]. Bristol : Taylor & Francis, 1997. ISBN 1-56032-405-8.
-
Kozubková, Marie; Drábková, Sylva. Numerické modelování proudění. VŠB-TU Ostrava, 2003.
|