Lecturer(s)
|
-
Bouda Adam, Doc. doktor technických věd
-
Bárta Jan, Ing.
-
Velemínský Jan, prof. Ing. CSc.
-
Šlechta Jiří, Ing. Ph.D.
-
Jírovec Kapitán, doc. Ing. Ph.D.
-
Kopecký Aleš, doc. RNDr. Ph.D.
-
Lenc Tomáš, Ing. Ph.D.
-
Pánek Jan, Ing.
-
Folgar Ribadas Jan, Ing. Ph.D.
|
Course content
|
Topics of lectures by weeks: 1st week: Introduction, basic properties of fluids: compressibility, expansibility, extensivity, sound velocity, capillarity. Statics of fluids ? fluid pressure, Euler´s static equation, pressure equation and pressure level equation. Pascal´s law. 2nd week: Incompressible and compressible fluid in gravitational field, relative balance of liquids in containers at an outside inertial acceleration. 3rd week: Liquid force acting on plain and curved surface, determination of hydrostatic centre, force acting on floating body. 4th week: Stability of floating body. Fluid dynamics introduction, classification of Newton flows. Euler´s and Lagrange´s description of flows. 5th week: Trajectories and streamlines. Movement- and continuity equation valid for streamline tube, extension for 3-D flows. Circulation and vorticity. Potential- and stream function of simple flows. Calculation of pressure from potential function. 6th week: Pressure signal transmission in a tube respecting friction. Potential flown around a cylinder without and with circulation. Transverse force on overflown bodies. 7th week: Conformal transformation of overflown cylinder on technical profiles. Viscous streams, molecular and molar shear stress. Laminar, transitional and turbulent flow in a channel, dependence on Reynolds number. 8th week: Normal and shear stress in fluid, their generalization into tensor of tension. Navier-Stokes movement equation of 3-D flow - mathematical and physical properties. 9th week: Similarity theory in fluid mechanics, conditions of similarity. Derivation of similarity criterions from basic partial equations of flow. Production of criterion equations. 10th week: Simplification of Navier-Stokes equation to Bernoulli equation of various types valid for viscous and unviscous, uncompressible and compressible flow. Solution of some technical problems. 11th week: Total, static and dynamic pressure, pneumatic probes for their measurement. Outflow of liquid from a vessel to ambience through a hole: small, big, small with a sleeve - generation of cavitation, submerged hole outflow, time of outflow and equalization of free levels in connected vessels. 12th week: Linear momentum equation and its technical applications: forces acting on moving blades, output of radial and axial turbine, function of centrifugal pump or compressor. 13th week: Laminar and turbulent velocity profiles in tubes. Local and friction pressure losses, hydraulicly smooth and rough walls, Prandtl´s function of roughness. Topics of seminars by weeks: 1st week: Pressures and forces in liquids, compressibility, capillarity. 2nd week: Expansibility, shear stress, liquid manometers and barometers. 3rd week: Incompressible and compressible liquid in gravitational field. 4th week: Relative balance of liquids in vessels under action of inertial accelerations. 5th week: Liquid force acting on a flat surface. Determination od hydrostatic centre. 6th week: Liquid force acting on curved surface, calculation of the hydrostatic centre position. Stability of floating body. 7th week: Computation of streamlines shapes, of rotation and flow continuity. Some mathematical modifications of items in partial differential equations. 8th week: Combination of simple potential flows. 9th week: Solution of simple viscous flows by using of Navier-Stokes equations or general Bernoulli equation. 10th week: Further examples of technical problems solved by different Bernoulli equation types. 11th week: Outflows and calculations of vessels emptying. 12th week: Linear momentum equation and its technical applications. 13th week: Laminar velocity profiles. Hydraulic losses.
|
Learning activities and teaching methods
|
Lecture with practical applications, One-to-One tutorial, Seminar classes
- Preparation for comprehensive test (10-40)
- 38 hours per semester
- Contact hours
- 52 hours per semester
- Preparation for an examination (30-60)
- 40 hours per semester
|
prerequisite |
---|
Knowledge |
---|
využívat základní znalosti z matematiky, zejména z oblasti diferenciálního počtu |
využívat teoretické znalosti z oboru mechanika tekutin, termomechanika, mechanika tuhých těles a pružnost a pevnost na konkrétní praktické řešení |
Skills |
---|
aplikovat samostatně získané teoretické znalosti na konkrétní praktické řešení |
provádět jednoduché fyzikální experimenty |
learning outcomes |
---|
Knowledge |
---|
vysvětlit základní jevy statiky a dynamiky mechaniky tekutin a určit jejich vlastnosti |
znát a popsat jednoduché úlohy výpočtově a experimentálně |
rozumět matematickému popisu principů složitějších problémů proudění, které jsou jádrem komerčních programů v oboru mechanika tekutin a na základě toho fundovaně pracovat a ověřovat pravdivost výsledků |
přenášet metody mechaniky tekutin do příbuzných oborů |
Skills |
---|
řešit jednoduché praktické příklady zejména z oblasti statiky a jednorozměrného proudění |
zvolit správný zjednodušený matematický model pro daný fyzikální problém |
teaching methods |
---|
Knowledge |
---|
One-to-One tutorial |
Interactive lecture |
Seminar classes |
assessment methods |
---|
Combined exam |
Recommended literature
|
-
Klimko, Marek; Žitek, Pavel,; Sedlák, Kamil. Sbírka příkladů z mechaniky tekutin I.. 1. vydání. 2017. ISBN 978-80-261-0745-3.
-
Linhart, Jiří. Mechanika tekutin I. 2. vyd. Plzeň : Západočeská univerzita v Plzni, 2009. ISBN 978-80-7043-766-7.
-
Uruba, Václav. Turbulence. Praha: ČVUT, 2014. ISBN 978-80-01-05600-4.
-
White, Frank. Fluid Mechanics. USA, 2021. ISBN 978-1260575545.
|