Lecturer(s)
|
-
Ožana Stanislav, prof. Ing. CSc.
-
Alimzhanov František, Ing.
-
Kopecký Aleš, doc. RNDr. Ph.D.
|
Course content
|
Obsah 1. Basic notions of thermodynamic. Basic of molecular physic. 2. Introduction to molecular cinematic theory of gas. Examples solving. 3. Basic lows of ideal gas. I.st and II.nd lows of thermodynamic. 4. Introduction to heat cycles, heat balance, cycles calculations. 5. Basic principles of heat and hydraulic machines. 6. Heat transfer by convection, conduction and radiation. 7. Hydrostatic, forces, relative equilibrium of fluid. 8. Conservation low, momentum and energy. Motion of fluids. 9. Measurement methods of pressure, velocity and mass flow. List of measurements technic on Thermodynamic. 10. Simple hydraulic machines, principle and using. 11. Viscosity, stationary 1D flow of real fluid. 12. Free surface, hydrodynamic analogy 13. Introduction to turbulence, final test.
|
Learning activities and teaching methods
|
Lecture
- Contact hours
- 26 hours per semester
- Preparation for comprehensive test (10-40)
- 26 hours per semester
|
prerequisite |
---|
Knowledge |
---|
master the basics of college mathematics such as derivatives, integration, and analytical methods for solving ordinary differential equations |
understand the most basic physical concepts from the field of mechanics |
use mathematical descriptions for physical quantities such as pressure, force, work, power, torque, etc. |
explain the meaning of the terms of a physical equation |
Skills |
---|
program a computer solution to a simple physics problem described by algebraic relations |
perform an analytical calculation of an ordinary differential equation |
Competences |
---|
N/A |
N/A |
learning outcomes |
---|
Knowledge |
---|
describe the structure of different types of thermal cycles |
explain the heat balance of the cycles |
understand relative liquid equilibrium calculations and simplified cases |
understand the physical essence of conduction, convection and radiation |
explain the laws of conservation of mass, momentum, energy and the equation of state |
determine when the flow will be laminar, turbulent or intermittent and define their properties |
determine the type of convection (natural, forced, developed,...) and choose the criterion equation for the heat transfer coefficient |
Skills |
---|
draw up a diagram of one of the basic thermal cycles and calculate its thermal efficiency |
determine the pressure distribution and pressure level in cases of liquid relative quiescence to the vessel walls |
analytically calculate the temperature distribution and heat flows in a body of simple shape, e.g. a cylinder |
to measure basic flow parameters such as static and dynamic pressure, velocity, flow, static, dynamic and total temperature |
Competences |
---|
N/A |
teaching methods |
---|
Knowledge |
---|
Lecture |
Skills |
---|
Lecture |
Competences |
---|
Lecture |
assessment methods |
---|
Knowledge |
---|
Individual presentation at a seminar |
Skills |
---|
Individual presentation at a seminar |
Competences |
---|
Test |
Recommended literature
|
-
Antal, Š., Horák, M. Termomechanika. Ediční středisko SVŠT, Bratislava, 1981.
-
Kalčík, Josef; Sýkora, Karel. Technická termomechanika. 1. vyd. Praha : Academia, 1973.
-
Mareš, Radim; Kokeisl, Miroslav; Kocourek, Karel. Tabulky termofyzikálních vlastností vody a vodní páry : termodynamické vlastnosti vody a vodní páry. 1. díl. 1. vyd. Plzeň : Západočeská univerzita, 1992. ISBN 80-7082-062-4.
-
Michejev, M. A. Základy sdílení tepla. SNTL, Praha, 1953.
-
Nožička, Jiří; Adamec, Josef,; Váradiová, Blanka. Termomechanika : sbírka příkladů. Vyd 1. Praha : Vydavatelství ČVUT, 1999. ISBN 80-01-02015-0.
-
Sazima, Miroslav. Sbírka příkladů z termomechaniky. nezměn. vyd. Praha : ČVUT, 1969.
-
Sazima, Miroslav. Teplo. 1. vyd. Praha : SNTL, 1989.
-
Wittlinger, V. Minilexikón tepla. ALFA, Bratislava, 1992.
|