Course: Algebraic Structures

« Back
Course title Algebraic Structures
Course code KMA/ALG
Organizational form of instruction Lecture + Seminar
Level of course Master
Year of study not specified
Semester Summer
Number of ECTS credits 5
Language of instruction Czech, English
Status of course unspecified
Form of instruction Face-to-face
Work placements This is not an internship
Recommended optional programme components None
Course availability The course is available to visiting students
Lecturer(s)
  • Čech Drahomír, prof. RNDr. DrSc.
Course content
Week 1: Groups, subgroups, Lagrange's Theorem. Week 2: Normal subgroups, quotient groups. Week 3: Homomorphisms of groups, theorems about isomorphism of groups. Week 4: Cyclic groups and their structure, direct sum of groups. Week 5: Chinese remainder theorem, groups of units modulo n Week 6: Abelian Groups, direct decomposition of Abelian group and finite Abelian p-groups. Week 7: Actions of groups, orbit counting theorem, groups of geometric transformations. Week 8: Sylow p-subgroups and their properties. Week 9: Chains of normal subgroups, Jordan-Holder theorem, solvable groups. Week 10: Rings and fields, subrings, ideals, quotient rings, zero divisors, Euclidean rings. Week 11: Rings of polynomials, splitting fields, solvability of polynomial equations in radicals, foundations of Galois theory. Week12: Representations of finite groups. Regular representation, irreducible representation. Week13: Character of representation.

Learning activities and teaching methods
Interactive lecture, Lecture with practical applications, Discussion, Individual study
  • Contact hours - 65 hours per semester
  • Preparation for an examination (30-60) - 50 hours per semester
  • Graduate study programme term essay (40-50) - 45 hours per semester
prerequisite
Knowledge
ovládat základy lineární algebry v rozsahu předmětu KMA/LAA
znát příklady konečných těles a jejich vlastnosti v rozsahu předmětu KMA/DMA
pracovat s pojmy homomorfismus a isomorfismus v kontextu teorie grafů
Basic knowledge in linear algebra and algebra is assumed.
Skills
korektně formulovat matematická tvrzení
používat základní důkazové techniky
srozumitelně vysvětlit matematickou úvahu
Competences
N/A
N/A
N/A
learning outcomes
Knowledge
umět aplikovat základní vlastnosti grup na konkrétní modely
umět rozpoznat a analyzovat strukturu okruhu a tělesa
umět rozpoznat počet ireducibilních reprezentací konečné grupy a navrhnout maticový tvar reprezentace grupy
Skills
nacházet souvislosti mezi teorií grup a dalšími matematickými teoriemi
vysvětlit složitější argumenty v oblasti teorie algebraických struktur
samostatně řešit problémy zaměřené na vlastnosti matematických struktur
Competences
N/A
N/A
teaching methods
Knowledge
Interactive lecture
Individual study
Discussion
Skills
Interactive lecture
Individual study
Discussion
Competences
Interactive lecture
Individual study
Discussion
assessment methods
Knowledge
Combined exam
Seminar work
Individual presentation at a seminar
Skills
Combined exam
Seminar work
Individual presentation at a seminar
Competences
Combined exam
Seminar work
Individual presentation at a seminar
Recommended literature
  • Algebra : Celost. vysokošk. učebnice pro stud. matematicko-fyzikálních a přírodovědeckých fakult, stud. oborů matematické vědy. 1. vyd. Praha : Academia, 1990. ISBN 80-200-0301-0.
  • Gallian, Joseph A. Contemporary abstract algebra. Tenth edition. 2021. ISBN 978-0-367-65178-7.
  • Lambek. Kolca i moduly. Mir Moskva.
  • Mac Lane, Saunders; Birkhoff, Garrett. Algebra. 2. vyd. Bratislava : Alfa, 1974.
  • Procházka, Ladislav. Úvod do studia reprezentací grup. 1. vyd. Praha : Karolinum, 1999. ISBN 80-246-0029-3.
  • Rotman, Joseph J. An introduction to the theory of groups. Fourth edition. 1995. ISBN 978-1-4612-8686-8.


Study plans that include the course
Faculty Study plan (Version) Category of Branch/Specialization Recommended year of study Recommended semester