Course: Mathematics 2

« Back
Course title Mathematics 2
Course code KMA/M2
Organizational form of instruction Lecture + Tutorial
Level of course Bachelor
Year of study not specified
Semester Summer
Number of ECTS credits 6
Language of instruction Czech
Status of course Compulsory-optional
Form of instruction Face-to-face
Work placements This is not an internship
Recommended optional programme components None
Lecturer(s)
  • Lášek António, prof. RNDr. Ph.D.
  • Siahkamari Josef, Mgr. Ph.D.
  • Krausová Michaela, RNDr.
Course content
Week 1: Point-wise and uniform convergence of function sequences; Week 2: Function series; Week 3: Power series and their convergence; Fourier series; Week 4: Vector functions of one real variable and their properties; curves in Rn; Week 5: Subsets of Rn and their topological properties; Week 6: Functions of n variables, their limits and continuity; Week 7: Directional derivative, total differential, tangent manifolds; chain rule; Week 8: Solvability of functional equations and differentiation of implicit functions; Week 9: Fundamental notions of min/max theory in Rn; Week 10: Mapping from Rn to Rm, its continuity and differentiability; regular mappings and transformations of coordinate systems; Week 11: Double and triple integral, Fubini theorem, basic techniques; Week 12: Application of double and triple integrals in geometry and physics; Week 13: Integrals depending on parameters and their differentiation.

Learning activities and teaching methods
Multimedia supported teaching, Lecture, Practicum
  • Preparation for an examination (30-60) - 56 hours per semester
  • Contact hours - 78 hours per semester
  • Preparation for comprehensive test (10-40) - 24 hours per semester
prerequisite
Knowledge
popsat derivaci a integrál funkce jedné reálné proměnné
rozpoznat logické symboly, výroky a kvantifikátory
popsat posloupnost a řadu reálných čísel
formulovat Taylorovu větu
popsat spojitou a inverzní funkci
understand basic principles of differentiation of functions of one variable,
understand basic principles of integration of functions of one variable
understand basic principles from linear algebra
understand basic principles of sequences and series
Skills
derivovat a integrovat funkce jedné reálné proměnné
spočítat maximum, minimum, supremum a infimum číselné množiny
nakreslit graf inverzní funkce; algebraické, goniometrické, exponenciální a hyperbolické
rozhodnout o konvergenci a divergenci posloupnosti, řady a nevlastního integrálu
řešit optimalizační úlohy pro funkce jedné reálné proměnné
differentiate and integrate functions of one varibale
manage algebraic operations with vectors and matrices
compute eigenvalues and eigenvectors of matrices
determine convergence or divergence of sequences
determine convergence or divergence of series
find extremes of functions of one variable
Competences
N/A
N/A
learning outcomes
Knowledge
popsat dvojné, trojné integrály a Fubiniovu větu
popsat mocninnou a Fourierovu řadu
popsat křivky a vlastnosti reálných funkcí vice proměnných
zavést derivace ve směru, parciální derivace, diferenciál a gradient
popsat funkční posloupnosti a řady
formulovat základní úlohy na maximum, resp. minimum
have knowledge of basic definitions and statements related to function sequences, function series, vector functions of one variable na real functions of one variable
understand basic principles of differentiation of functions of more variables
understand basic principles of integration of functions of more variables
understand basic principles of vector functions theory
understand basic principles of function sequences and function series
Skills
počítat dvojné, trojné integrály a integrály s parametrem
spočítat derivace ve směru, parciální derivace, gradient a diferenciál funkcí více proměnných
vyřešit úlohy na hledání extrému funkcí více proměnných
rozpoznat vlastnosti reálných funkcí vice proměnných (spojitost, hladkost apod.)
rozvinout danou funkci v mocninnou nebo Fourierovu řadu
rozhodnout o konvergenci funkční posloupnosti a řady
perform operations with function sequences and function series
expand a function in power series or Fourier series
describe curves in Rn and perform simple operations with them
analyze basic properties of functions of more variables
determine directional and partial derivatives of functions of more variables
formulate basic extremal problems and solve them
compute double and triple integrals
work with integrals with parameters
Competences
N/A
N/A
teaching methods
Knowledge
Lecture
Practicum
Multimedia supported teaching
Skills
Multimedia supported teaching
Practicum
Lecture
Competences
Lecture
Practicum
Multimedia supported teaching
assessment methods
Knowledge
Continuous assessment
Combined exam
Test
Skills
Combined exam
Continuous assessment
Test
Competences
Continuous assessment
Combined exam
Test
Recommended literature
  • Brabec, Jiří; Hrůza, Bohuslav. Matematická analýza II. Praha : SNTL, 1986.
  • Drábek, Pavel; Míka, Stanislav. Matematická analýza II. 3. nezm. vyd. Plzeň : ZČU, 1999. ISBN 80-7082-528-6.
  • Thomson, Bruckner, Bruckner. Elementary real analysis. 2008. ISBN 978-1434843.


Study plans that include the course
Faculty Study plan (Version) Category of Branch/Specialization Recommended year of study Recommended semester