Lecturer(s)
|
-
Lášek António, prof. RNDr. Ph.D.
-
Siahkamari Josef, Mgr. Ph.D.
-
Krausová Michaela, RNDr.
|
Course content
|
Week 1: Point-wise and uniform convergence of function sequences; Week 2: Function series; Week 3: Power series and their convergence; Fourier series; Week 4: Vector functions of one real variable and their properties; curves in Rn; Week 5: Subsets of Rn and their topological properties; Week 6: Functions of n variables, their limits and continuity; Week 7: Directional derivative, total differential, tangent manifolds; chain rule; Week 8: Solvability of functional equations and differentiation of implicit functions; Week 9: Fundamental notions of min/max theory in Rn; Week 10: Mapping from Rn to Rm, its continuity and differentiability; regular mappings and transformations of coordinate systems; Week 11: Double and triple integral, Fubini theorem, basic techniques; Week 12: Application of double and triple integrals in geometry and physics; Week 13: Integrals depending on parameters and their differentiation.
|
Learning activities and teaching methods
|
Multimedia supported teaching, Lecture, Practicum
- Preparation for an examination (30-60)
- 56 hours per semester
- Contact hours
- 78 hours per semester
- Preparation for comprehensive test (10-40)
- 24 hours per semester
|
prerequisite |
---|
Knowledge |
---|
popsat derivaci a integrál funkce jedné reálné proměnné |
rozpoznat logické symboly, výroky a kvantifikátory |
popsat posloupnost a řadu reálných čísel |
formulovat Taylorovu větu |
popsat spojitou a inverzní funkci |
understand basic principles of differentiation of functions of one variable, |
understand basic principles of integration of functions of one variable |
understand basic principles from linear algebra |
understand basic principles of sequences and series |
Skills |
---|
derivovat a integrovat funkce jedné reálné proměnné |
spočítat maximum, minimum, supremum a infimum číselné množiny |
nakreslit graf inverzní funkce; algebraické, goniometrické, exponenciální a hyperbolické |
rozhodnout o konvergenci a divergenci posloupnosti, řady a nevlastního integrálu |
řešit optimalizační úlohy pro funkce jedné reálné proměnné |
differentiate and integrate functions of one varibale |
manage algebraic operations with vectors and matrices |
compute eigenvalues and eigenvectors of matrices |
determine convergence or divergence of sequences |
determine convergence or divergence of series |
find extremes of functions of one variable |
Competences |
---|
N/A |
N/A |
learning outcomes |
---|
Knowledge |
---|
popsat dvojné, trojné integrály a Fubiniovu větu |
popsat mocninnou a Fourierovu řadu |
popsat křivky a vlastnosti reálných funkcí vice proměnných |
zavést derivace ve směru, parciální derivace, diferenciál a gradient |
popsat funkční posloupnosti a řady |
formulovat základní úlohy na maximum, resp. minimum |
have knowledge of basic definitions and statements related to function sequences, function series, vector functions of one variable na real functions of one variable |
understand basic principles of differentiation of functions of more variables |
understand basic principles of integration of functions of more variables |
understand basic principles of vector functions theory |
understand basic principles of function sequences and function series |
Skills |
---|
počítat dvojné, trojné integrály a integrály s parametrem |
spočítat derivace ve směru, parciální derivace, gradient a diferenciál funkcí více proměnných |
vyřešit úlohy na hledání extrému funkcí více proměnných |
rozpoznat vlastnosti reálných funkcí vice proměnných (spojitost, hladkost apod.) |
rozvinout danou funkci v mocninnou nebo Fourierovu řadu |
rozhodnout o konvergenci funkční posloupnosti a řady |
perform operations with function sequences and function series |
expand a function in power series or Fourier series |
describe curves in Rn and perform simple operations with them |
analyze basic properties of functions of more variables |
determine directional and partial derivatives of functions of more variables |
formulate basic extremal problems and solve them |
compute double and triple integrals |
work with integrals with parameters |
Competences |
---|
N/A |
N/A |
teaching methods |
---|
Knowledge |
---|
Lecture |
Practicum |
Multimedia supported teaching |
Skills |
---|
Multimedia supported teaching |
Practicum |
Lecture |
Competences |
---|
Lecture |
Practicum |
Multimedia supported teaching |
assessment methods |
---|
Knowledge |
---|
Continuous assessment |
Combined exam |
Test |
Skills |
---|
Combined exam |
Continuous assessment |
Test |
Competences |
---|
Continuous assessment |
Combined exam |
Test |
Recommended literature
|
-
Brabec, Jiří; Hrůza, Bohuslav. Matematická analýza II. Praha : SNTL, 1986.
-
Drábek, Pavel; Míka, Stanislav. Matematická analýza II. 3. nezm. vyd. Plzeň : ZČU, 1999. ISBN 80-7082-528-6.
-
Thomson, Bruckner, Bruckner. Elementary real analysis. 2008. ISBN 978-1434843.
|