|
Lecturer(s)
|
-
Ezrová Tereza, RNDr. Ph.D.
-
Janda Rudolf, Ing. Ph.D.
-
Procházka Ervín, RNDr. Ph.D.
-
Kanda Marek, Ing. Ph.D.
-
Kačer Michal, prof. RNDr. Ph.D.
|
|
Course content
|
Week 1: Point-wise and uniform convergence of function sequences; Week 2: Function series; Week 3: Power series and their convergence; Fourier series; Week 4: Vector functions of one real variable and their properties; curves in Rn; Week 5: Subsets of Rn and their topological properties; Week 6: Functions of n variables, their limits and continuity; Week 7: Directional derivative, total differential, tangent manifolds; chain rule; Week 8: Solvability of functional equations and differentiation of implicit functions; Week 9: Fundamental notions of min/max theory in Rn; Week 10: Mapping from Rn to Rm, its continuity and differentiability; regular mappings and transformations of coordinate systems; Week 11: Double and triple integral, Fubini theorem, basic techniques; Week 12: Application of double and triple integrals in geometry and physics; Week 13: Integrals depending on parameters and their differentiation.
|
|
Learning activities and teaching methods
|
Interactive lecture, Lecture supplemented with a discussion, Task-based study method
- Preparation for comprehensive test (10-40)
- 24 hours per semester
- Preparation for an examination (30-60)
- 56 hours per semester
- Contact hours
- 78 hours per semester
|
| prerequisite |
|---|
| Knowledge |
|---|
| rozumět základním principům z oblasti diferenciálního počtu funkcí jedné proměnné |
| rozumět základním principům z oblasti integrálního počtu funkcí jedné proměnné |
| rozumět základním principům z oblasti lineární algebry |
| rozumět základním principům z oblasti číselných posloupností a řad |
| understand basic principles of differentiation of functions of one variable |
| understand basic principles of integration of functions of one variable, |
| understand basic principles from linear algebra |
| understand basic principles of sequences and series |
| Skills |
|---|
| derivovat a integrovat funkce jedné proměnné |
| ovládat aritmetické operace s vektory a maticemi |
| pro zadanou matici vypočítat vlastní čísla a vlastní vektory |
| rozhodnout o konvergenci či divergenci číselné posloupnosti |
| rozhodnout o konvergenci či divergenci číselné řady |
| nalézt extrémy funkce jedné proměnné |
| differentiate and integrate functions of one varibale |
| perform algebraic operations with vectors and matrices |
| compute eigenvalues and eigenvectors of matrices |
| determine convergence or divergence of sequences |
| determine convergence or divergence of series |
| find extremal values of functions of one variable |
| Competences |
|---|
| N/A |
| N/A |
| N/A |
| learning outcomes |
|---|
| Knowledge |
|---|
| prokázat znalost definic a základních tvrzení týkajících se funkčních posloupností, funkčních řad, vektorových funkcí jedné reálné proměnné a reálných funkcí více proměnných |
| rozumět základním principům teorie diferenciálního počtu funkcí více proměnných |
| rozumět základním principům teorie integrálního počtu funkcí více proměnných |
| rozumět základním principům teorie vektorových funkcí jedné proměnné |
| rozumět základním principům teorie funkčních posloupností a řad |
| have knowledge of basic definitions and statements related to function sequences, function series, vector functions of one variable na real functions of one variable |
| understand basic principles of differentiation of functions of more variables |
| understand basic principles of integration of functions of more variables |
| understand basic principles of vector functions theory |
| understand basic principles of function sequences and function series |
| Skills |
|---|
| pracovat s funkčními posloupnostmi a řadami |
| rozvinout danou funkci v mocninnou nebo Fourierovu řadu |
| popsat křivky v Rn a pracovat s nimi |
| určit vlastnosti reálných funkcí vice proměnných (spojitost, hladkost apod.) |
| počítat derivace ve směru a parciální derivace funkcí více proměnných |
| formulovat základní úlohy na maximum, resp. minimum, a tyto úlohy vyřešit s využitím diferenciálního počtu |
| počítat dvojné a trojné integrály |
| pracovat s integrály závislými na parametru |
| perform operations with function sequences and function series |
| expand a function in power series or Fourier series |
| describe curves in Rn and perform simple operations with them |
| analyze basic properties of functions of more variables |
| determine directional and partial derivatives of functions of more variables |
| formulate basic extremal problems and solve them |
| compute double and triple integrals |
| perform basic operations with integrals with parameters |
| Competences |
|---|
| N/A |
| N/A |
| N/A |
| teaching methods |
|---|
| Knowledge |
|---|
| Lecture supplemented with a discussion |
| Interactive lecture |
| Task-based study method |
| Practicum |
| Skills |
|---|
| Lecture supplemented with a discussion |
| Interactive lecture |
| Task-based study method |
| Practicum |
| Competences |
|---|
| Lecture supplemented with a discussion |
| Interactive lecture |
| Task-based study method |
| Practicum |
| assessment methods |
|---|
| Knowledge |
|---|
| Combined exam |
| Skills demonstration during practicum |
| Test |
| Skills |
|---|
| Combined exam |
| Skills demonstration during practicum |
| Test |
| Competences |
|---|
| Combined exam |
| Skills demonstration during practicum |
| Test |
|
Recommended literature
|
-
Brabec, Jiří; Hrůza, Bohuslav. Matematická analýza II. Praha : SNTL, 1986.
-
P. Drábek, S. Míka. Matematická analýza II. Plzeň, 2010. ISBN 978-80-7082-977-6.
-
Thomson, Bruckner, Bruckner. Elementary real analysis. 2008. ISBN 978-1434843.
|