Lecturer(s)
|
|
Course content
|
The content of the course is to expand students' knowledge gained in basic mathematical objects of a number of application examples and historical notes, and in German language. Specifically, the following areas of mathematics: linear algebra, Bool algebra, graphs theory, linear optimization, differential equations, numeric methods.
|
Learning activities and teaching methods
|
Interactive lecture, Students' portfolio, Skills demonstration, Textual studies
- Preparation for formative assessments (2-20)
- 10 hours per semester
- Undergraduate study programme term essay (20-40)
- 30 hours per semester
- Contact hours
- 26 hours per semester
- Presentation preparation (report in a foreign language) (10-15)
- 15 hours per semester
|
prerequisite |
---|
Knowledge |
---|
The students are expected outcomes matematily range of high school and first semester of college and an active knowledge of German language, ie the ability to communicate in that language, and knowledge of basic mathematical terminology in the German language equivalent of the course Mathematik (KMA / MATD). |
learning outcomes |
---|
Ability to communicate technical issues in a foreign language - German. Ability to develop in a foreign language, brief scholarly text. After completing the course, students will be able to work with specialized texts in German and prepare technical contribution in the German language as a seminar or conference. |
teaching methods |
---|
Interactive lecture |
Textual studies |
Skills demonstration |
Students' portfolio |
assessment methods |
---|
Test |
Seminar work |
Individual presentation at a seminar |
Recommended literature
|
-
Artmann. Lineare Algebra.
-
Deufhard. Numerische Mathematik II.
-
Deuflhard, Peter; Hohmann, Andreas. Numerische Mathematik. 1, Eine algorithmisch orientierte Einführung. 2., überarbeitete Aufl. Berlin : Walter de Gruyter, 1993. ISBN 3-11-013975-8.
-
Meyberg, K., Vachenauer, P. Hoehere Mathematik 2. Berlin, 2001. ISBN 3-540-41851-2.
-
Meyberg, Kurt; Vachenauer, Peter. Höhere Mathematik 1 : Differential- und Integralrechnung : Vektor- und Matrizenrechnung. 6., korrigierte Aufl. Berlin : Springer, 2001. ISBN 3-540-41850-4.
-
Volkmann, L. Graphen und Digraphen. Wien, 1991. ISBN 3-211-82267-4.
-
Walter, Wolfgang. Ordinary differential equations. New York : Springer-Verlag, 1998. ISBN 0-387-98459-3.
|