Course: Mathematics for Electrical Engineers 4

« Back
Course title Mathematics for Electrical Engineers 4
Course code KMA/ME4
Organizational form of instruction Lecture + Tutorial
Level of course Bachelor
Year of study not specified
Semester Winter and summer
Number of ECTS credits 3
Language of instruction Czech
Status of course unspecified
Form of instruction Face-to-face
Work placements This is not an internship
Recommended optional programme components None
Lecturer(s)
  • Valentová Ivana, doc. Ing. Ph.D.
Course content
Week 1: Functions of several variables, their graph, partial derivatives, total differential.. Week 2: Higher order partial derivatives. Week 3: Fundamental notions of min/max theory in Rn; Week 4: Double integral, Fubini theorem. Methods to computation. Week 5: Change of variables in a double integrals Week 6: Triple integral, methods to computation. change of variables. Week 7: Scalar field, gradient, directional derivative. Week 8: Vector fields, divergence and curl. Operator Laplace, Hamilton. Week 9: Paths and parametrizations. Path integrals of scalar fields. Week 10: Path integrals of vector fields, Week 11: Surface integral of scalar fields. Week 12: Surface integral of vector fields. Week 13: Integration theorems of vector calculus

Learning activities and teaching methods
Interactive lecture, Task-based study method, Students' self-study
  • Contact hours - 39 hours per semester
  • Preparation for formative assessments (2-20) - 15 hours per semester
  • Preparation for comprehensive test (10-40) - 25 hours per semester
prerequisite
Knowledge
No particular prerequisites specified.
learning outcomes
By the end of the course, a successful student should be able to: compute partial derivatives of functions of more variables, formulate basic min/max problems of Rn, define and use scalar and vector fields, evaluate double and triple integrals, change of variables in a double and triple integrals, integration along paths and over surfaces.
teaching methods
Interactive lecture
Task-based study method
Self-study of literature
assessment methods
Combined exam
Test
Skills demonstration during practicum
Recommended literature
  • Drábek, Pavel; Míka, Stanislav. Matematická analýza II.. 4. vyd. Plzeň : Západočeská univerzita, 2003. ISBN 80-7082-977-X.
  • Mašek, Josef. Sbírka úloh z matematiky : diferenční rovnice a transformace Z. 1. vyd. Plzeň : ZČU, 1998. ISBN 80-7082-457-3.
  • Mašek, Josef. Sbírka úloh z matematiky : integrální transformace. 1. vyd. Plzeň : ZČU, 1993. ISBN 80-7082-117-5.
  • Míka, Stanislav. Matematická analýza III : tenzorová analýza. 1. vyd. Plzeň : Západočeská univerzita, 1993. ISBN 80-7082-115-9.
  • Polák, Josef. Funkční posloupnosti a řady ; Fourierovy řady. 2. upr. vyd. Plzeň : Západočeská univerzita, 2004. ISBN 80-7043-282-9.
  • Polák, Josef. Integrální a diskrétní transformace. 3.,přeprac. vyd. Plzeň : Západočeská univerzita, 2002. ISBN 80-7082-924-9.
  • Polák, Josef. Matematická analýza v komplexním oboru II/. 1. vyd. Plzeň : Západočeská univerzita, 2000. ISBN 80-7082-700-9.
  • Polák, Josef. Matematická analýza v komplexním oboru. 2., upr. vyd. Plzeň : Západočeská univerzita, 2002. ISBN 80-7082-923-0.


Study plans that include the course
Faculty Study plan (Version) Category of Branch/Specialization Recommended year of study Recommended semester