Course: Mathematical Models in Econometrics

« Back
Course title Mathematical Models in Econometrics
Course code KMA/MME
Organizational form of instruction Lecture + Tutorial
Level of course Master
Year of study not specified
Semester Winter
Number of ECTS credits 4
Language of instruction Czech, English
Status of course Compulsory-optional
Form of instruction Face-to-face
Work placements This is not an internship
Recommended optional programme components None
Course availability The course is available to visiting students
Lecturer(s)
  • Dostal Rostislav, Ing. Ph.D.
Course content
1. Classical regression linear model with econometric applications. 2. Model selection and hypothesis tests. 3. Generalized regression model. Regression diagnosis. Weighted Least Square. 4. Special econometric models. regression models with dummy variables. Models with lagged variables. 5. Models for discrete choice. Limited dependent variables . truncation, censoring, sample selection. 6. Nonlinear regression models. 7. Systems of equations. Models for panel data. Simultaneous Equations models. 8. Models of interest rates and interest rate derivatives. 9. Quantitative risk management.

Learning activities and teaching methods
Interactive lecture, Lecture with practical applications, Students' portfolio, Individual study, Students' self-study
  • Contact hours - 39 hours per semester
  • Undergraduate study programme term essay (20-40) - 30 hours per semester
  • Preparation for an examination (30-60) - 40 hours per semester
prerequisite
Knowledge
describe and explain the principles of statistical inference - especially the principles of point and interval estimates and the principles of testing statistical hypotheses (within the scope of the course KMA / PSA)
describe and explain the basic operations of matrix calculus (within the scope of the course KMA / LA)
formulate and explain the definition of probability (within the scope of the subject KMA / PSA)
explain basic microeconomic and macroeconomic theories of mainstream economics (in the range of subjects KEM / EK1 and KEM / EK2)
describe and explain the basic concepts of differential and integral calculus (within the scope of subjects KMA / M1 and KMA / M2)
Skills
use knowledge of basic statistical methods and procedures for simple data analysis
differentiate between different types of random variables (discrete, continuous) and different types of distributions
apply theoretical economic knowledge to model situations
Competences
N/A
learning outcomes
Knowledge
explain the principle of regression models and describe various possibilities of estimating the parameters of regression models
describe and explain the assumptions of regression analysis and the consequence of non-compliance with the assumption on the quality of model parameter estimation
formulate econometric models as regression linear and nonlinear models
describe and interpret regression models with binary variables
Skills
formulate a regression model suitable for specific data
use knowledge of the assumptions of regression models for regression diagnostics
estimate the parameters of linear and nonlinear regression models in at least one SW environment
apply the formal and content side correctly in mathematical expression, both written and oral
interpret econometric models of the general professional public and is able to assess the adequacy of the use of the proposed models
Competences
N/A
N/A
teaching methods
Knowledge
Interactive lecture
Individual study
Skills
Interactive lecture
Individual study
Competences
Individual study
Interactive lecture
assessment methods
Knowledge
Combined exam
Seminar work
Skills
Combined exam
Seminar work
Competences
Combined exam
Seminar work
Recommended literature
  • Anděl, Jiří. Matematika náhody. Vyd. 2. Praha : Matfyzpress, 2003. ISBN 80-86732-07-X.
  • ARLT, J. Moderní metody modelování ekonomických časových řad. Vyd. 1. Praha : Grada, 1999. ISBN 80-7169-539-4.
  • Cipra, Tomáš. Analýza časových řad s aplikacemi v ekonomii. SNTL Praha, 1986.
  • Cipra, Tomáš. Ekonometrie. SPN Praha, 1984.
  • Cipra, Tomáš. Finanční ekonometrie. 1. vyd. Praha : Ekopress, 2008. ISBN 978-80-86929-43-9.
  • G. Judge a spol. Theory and Practice of Econometrics.
  • Heiss. Using R for Introductiory Econometrics.
  • HUŠEK, R. Ekonometrická analýza. Praha : Ekopress, 1999. ISBN 80-86119-19-X.
  • HUŠEK R. Základy ekonometrické analýzy II. Speciální postupy a techniky. VŠE, Praha 1998. 1998.
  • Hušek, Roman. Základy ekonometrické analýzy I : modely a metody. 1. vyd. Praha : VŠE, 1996. ISBN 80-7079-102-0.
  • Zvára, K. Regresní analýza. Academia Praha, 1989.


Study plans that include the course
Faculty Study plan (Version) Category of Branch/Specialization Recommended year of study Recommended semester