Course: Mathematics for Mechanical Engineers 2

« Back
Course title Mathematics for Mechanical Engineers 2
Course code KMA/MS2
Organizational form of instruction Lecture + Tutorial
Level of course Bachelor
Year of study not specified
Semester Winter and summer
Number of ECTS credits 6
Language of instruction Czech
Status of course unspecified
Form of instruction Face-to-face
Work placements This is not an internship
Recommended optional programme components None
Lecturer(s)
  • Brada Pavel, Ing. Ph.D.
Course content
1. Differential models of dynamic systems; first-order differential equations and first-order systems; 2. Ordinary linear differential equations n-th order. 3. First and secod-order systems. 4. Scalar functions of several variables, limits, contunuity. 5. Differential calculus of functions of several variables. 6. Optimalization, local and constrained extrems. 7. Integral calculus of functions of several variables. 8. Curve and surface integrals. 9. Scalar and vector fields. 10. Vector functions, differential calculus of vector functions. 11. Differential and integral characteristics of vector fields. 12. Integral's theorems in the vector fields. 13. Integral with parameter.

Learning activities and teaching methods
Lecture, Practicum
  • Contact hours - 78 hours per semester
  • Preparation for formative assessments (2-20) - 10 hours per semester
  • Preparation for comprehensive test (10-40) - 30 hours per semester
  • Preparation for an examination (30-60) - 38 hours per semester
prerequisite
Knowledge
There is no prerequisite for this course. Students should be familiar with basic notions of mathematical analysis to the extent of the course KMA/MS1.
learning outcomes
By the end of the course, a successful student should be able to: 1. Solve differential equation of first order and system of differential equations; 2. Solve initial problems; 3. Describe curves in Rn and work with them; 4. Determine properties of functions of more variables; 5. Compute directional and partial derivatives of functions of more variables; 6. Formulate basic min/max problems and solve them using differential calculus; 7. Evaluate double and triple integrals; 8. Compute curves integral; 9. Deal with differential and integral characteristic of vector fields.
teaching methods
Lecture
Practicum
assessment methods
Combined exam
Test
Recommended literature
  • Brabec, Jiří; Hrůza, Bohuslav. Matematická analýza II. Praha : SNTL, 1986.
  • Drábek, Pavel; Míka, Stanislav. Matematická analýza II. 3. nezm. vyd. Plzeň : ZČU, 1999. ISBN 80-7082-528-6.
  • Ivan, Ján. Matematika 2. 1. vyd. Bratislava : Alfa, 1989. ISBN 80-05-00114-2.
  • Jarník, Vojtěch. Diferenciální počet II. Praha : Academia, 1976.
  • Jarník, Vojtěch. Integrální počet. II. Praha : Nakladatelství Československé akademie věd, 1955.
  • Jirásek, František; Kriegelstein, Eduard; Tichý, Zdeněk. Sbírka řešených příkladů z matematiky : logika a množiny, lineární a vektorová algebra, analytická geometrie, posloupnosti a řady, diferenciální a integrální počet funkcí jedné proměnné. 2. nezměn. vyd. Praha : SNTL, 1981.
  • Jirásek, František; Vacek, Ivan; Čipera, Stanislav. Sbírka řešených příkladů z matematiky II. 1. vyd. Praha : SNTL, 1989.
  • Mašek, Josef. Řešené úlohy z matematiky : dvojné, trojné, křivkové a plošné integrály. 1. vyd. Plzeň : Západočeská univerzita, 2001. ISBN 80-7082-836-6.


Study plans that include the course
Faculty Study plan (Version) Category of Branch/Specialization Recommended year of study Recommended semester