Lecturer(s)
|
-
Piskač Tomáš, prof. RNDr. DSc.
-
Vorel Kryštof, prof. RNDr. DrSc.
|
Course content
|
Continuous structures: metric spaces, topological spaces, uniformity, uniform spaces, metrizability. Discrete structures: algebraic structures, algebraic methods of graph theory, matroids, duality.
|
Learning activities and teaching methods
|
One-to-One tutorial, Task-based study method, Individual study, Self-study of literature
- Preparation for an examination (30-60)
- 33 hours per semester
- Individual project (40)
- 30 hours per semester
- Presentation preparation (report) (1-10)
- 15 hours per semester
- Contact hours
- 52 hours per semester
|
prerequisite |
---|
Knowledge |
---|
Student are supposed to have knowledge in Graph Theory and Computational Complexity corresponding to the contents of the courses KMA/TGD1 and KMA/TGD2 and knowledge in Functional Analysis corresponding to the contents of the course KMA/UFA. |
learning outcomes |
---|
The student will have an overview of deeper connections between some seemingly unrelated parts of Mathematics. |
teaching methods |
---|
Task-based study method |
Self-study of literature |
Individual study |
One-to-One tutorial |
assessment methods |
---|
Oral exam |
Individual presentation at a seminar |
Recommended literature
|
-
Adámek, Jiří; Koubek, Václav; Reiterman, Jan. Základy obecné topologie. 1. vyd. Praha : SNTL, 1977.
-
Kučera, Luděk; Nešetřil, Jaroslav. Algebraické metody diskrétní matematiky : Velmi rychlé násobení, obvody vysoké koncentrace, charakteristické věty, matroidy - netradiční moderní lineární algebra. Praha : SNTL, 1989. ISBN 80-03-00107-2.
|