Course: Seminar on Differential Calculus

« Back
Course title Seminar on Differential Calculus
Course code KMA/SDP
Organizational form of instruction Tutorial
Level of course Bachelor
Year of study not specified
Semester Winter and summer
Number of ECTS credits 2
Language of instruction Czech
Status of course Compulsory, Compulsory-optional, Optional
Form of instruction Face-to-face
Work placements This is not an internship
Recommended optional programme components None
Lecturer(s)
  • Hrabáček Vítězslav, Ing. Ph.D.
  • Kučera Vilém, RNDr. Ph.D.
  • Lysák Jaroslav, Ing. Ph.D.
  • Brada Pavel, Ing. Ph.D.
  • Pech Ondřej, Ing. Ph.D.
  • Breitfelder Ondřej, Mgr.
  • Vrbková Marie, Ing. Ph.D.
  • Lášek António, prof. RNDr. Ph.D.
  • Siahkamari Josef, Mgr. Ph.D.
Course content
Week 1: sets and operations on them; bounded number set; maximum, minimum, supremum and infimum of a number set; Week 2: sequences of real numbers; bounded and monotone sequences; convergent and divergent sequences; Week 3: methods for computing limits of sequences; Cauchy sequences; Week 4: infinite number series; necessary condition and criteria for convergence of number series; Week 5: absolute and relative convergence of number series; alternating series; Week 6: real functions of one real variable; properties of functions; composite and inverse functions; Week 7: limits of a function; one-sided limits; calculating limits; Week 8: continuity of a function at a point and points of discontinuity; continuity on an interval; Week 9: derivative of a function; rules for calculating the derivative; geometric meaning of the derivative; differential of a function; Week 10: mean value theorems; stationary points of a function; l'Hospital's rule; Week 11: primitive functions; calculating the indefinite integral; integration by parts; integration by substitution; Week 12: definite integral; calculating the definite integral; the mean value theorem; Week 13: improper integrals; Taylor's polynomial; Taylor's theorem.

Learning activities and teaching methods
Seminar
  • Contact hours - 26 hours per semester
  • Preparation for comprehensive test (10-40) - 26 hours per semester
prerequisite
Knowledge
recognise direct and inverse proportion problems
describe the rules for modifying numerical and algebraic expressions
describe basic functions (polynomials, goniometric functions, exponential, logarithmic functions)
recognise arithmetic and geometric sequences
identify quadratic, exponential, logarithmic and goniometric equations
Skills
solve quadratic, exponential, logarithmic and goniometric equations
modify numerical and algebraic expressions
sketch graphs of basic functions
calculate the partial sum of an arithmetic and geometric sequence
Competences
N/A
N/A
learning outcomes
Knowledge
recognise logical symbols, statements and quantifiers
describe continuous and inverse functions
describe a sequence and series of real numbers
describe the derivative and integral of a function of one real variable
Skills
draw the graph of the inverse function; algebraic, goniometric, exponential and hyperbolic
differentiate and integrate functions of one real variable
solve optimization problems for functions of one real variable
decide on the convergence and divergence of a sequence, a series and an improper integral
Competences
N/A
N/A
teaching methods
Knowledge
Seminar
Skills
Seminar
Competences
Seminar
assessment methods
Knowledge
Test
Skills
Test
Competences
Test
Recommended literature
  • Canuto, Claudio. Mathematical analysis I. New York : Springer, 2008. ISBN 978-88-470-0875-5.
  • Děmidovič, Boris Pavlovič. Sbírka úloh a cvičení z matematické analýzy. Havlíčkův Brod : Fragment, 2003. ISBN 80-7200-587-1.
  • Drábek, Pavel; Míka, Stanislav. Matematická analýza I.. 5. vyd. Plzeň : Západočeská univerzita, 2003. ISBN 80-7082-978-8.
  • Fonda, Alessandro. A Modern Introduction to Mathematical Analysis. Cham : Birkhäuser, 2023. ISBN 978-3-031-23712-6.
  • Míková, Marta; Kubr, Milan; Čížek, Jiří. Sbírka příkladů z matematické analýzy I. Plzeň : Západočeská univerzita, 1999. ISBN 80-7082-568-5.
  • Polák, J. Přehled středoškolské matematiky.. Praha : Prometheus, 2008. ISBN 978-80-7196-356-1.


Study plans that include the course
Faculty Study plan (Version) Category of Branch/Specialization Recommended year of study Recommended semester