Lecturer(s)
|
-
Valentová Ivana, doc. Ing. Ph.D.
-
Caletka Tomáš, RNDr. CSc.
|
Course content
|
Vectors, matrices, determinants, eigenvalues, eigenvectors. Systems of linear equations. Analytic geometry. Sequences. Functions of one real variable. Limits and continuity of function. Monotonic functions. Derivatives, concave down (up), extremes of functions. Behaviour of functions. Taylor's theorem. Indefinite and definite integral.
|
Learning activities and teaching methods
|
Seminar classes, Seminar, Practicum
- Contact hours
- 26 hours per semester
- Preparation for comprehensive test (10-40)
- 18 hours per semester
- Preparation for formative assessments (2-20)
- 10 hours per semester
|
prerequisite |
---|
Knowledge |
---|
There is no prerequisite for this course. Students should be familiar with basic notions of the secondary school. |
learning outcomes |
---|
On completion of this module the student will be able to solve: problems from vector algebra, analytic geometry in E2 and E3, matrix calculus, systems of linear algebraic equations, compute derivative of fiction, graphs of fiction, determine interval of monotonity and convexity and concavity, optimization problems in R1. |
teaching methods |
---|
Seminar |
Practicum |
Seminar classes |
assessment methods |
---|
Test |
Skills demonstration during practicum |
Recommended literature
|
-
Čížek, Jiří; Kubr, Milan; Míková, Marta. Sbírka příkladů z matematické analýzy I. 1. vyd. Plzeň : ZČU, 1995. ISBN 80-7082-216-3.
-
Děmidovič, Boris Pavlovič. Sbírka úloh a cvičení z matematické analýzy. Havlíčkův Brod : Fragment, 2003. ISBN 80-7200-587-1.
|