Course: Fundamentals of Differential Equations

« Back
Course title Fundamentals of Differential Equations
Course code KMA/ZDR
Organizational form of instruction Seminar
Level of course Bachelor
Year of study 1
Semester Summer
Number of ECTS credits 3
Language of instruction Czech
Status of course Compulsory-optional
Form of instruction Face-to-face
Work placements This is not an internship
Recommended optional programme components None
Lecturer(s)
  • Lášek António, prof. RNDr. Ph.D.
  • Čižmář Jiří, doc. Ing. Ph.D.
  • Novák Pavel, prof. Ing. Ph.D.
  • Boháč Pavel, doc. RNDr. Ph.D.
Course content
Week 1: Differential equations as models of real world processes. Basic notation. Qualitative analysis of population models. Week 2: Cauchy problem for equations of the 1st order. Euler method of numeric integration. Equations with separable variables. Week 3: Cauchy problem for equations of the 1st order. Homogeneous equation. Substitution. Week 4: Cauchy problem for equations of the 1st order. Geometric interpretation and orthogonal curves. Week 5: Linear problems of the 1st order. Homogeneous equations. Variation of parameters for non-homogeneous equations. Week 6: Linear problems of the n-th order. Fundamental system. Week 7: Linear problems of the n-th order. Variation of parameters. Week 8: Linear equations with constant coefficients. Characteristic equation. Week 9: Linear equations with constant coefficients. Particular integral. Week 10: Euler equation. Week 11: Boundary value problems. Eigenvalues and eigenfunctions. Week 12: Systems of differential equations. Week 13: Nonlinear equations - special types.

Learning activities and teaching methods
Lecture supplemented with a discussion, Lecture with practical applications, Seminar classes
  • Preparation for formative assessments (2-20) - 10 hours per semester
  • Contact hours - 26 hours per semester
  • Preparation for comprehensive test (10-40) - 16 hours per semester
prerequisite
Knowledge
understanding basic principles of calculus of functions of one real variable: derivatives, differentials etc.
understanding basic principles of calculus of functions of one real variable: Newton integral, fundamental theorem of calculus etc.
understanding basic principles of linear algebra
Skills
finding derivatives and primitives of real functions of one real variable
operations with vectors and matrices
calculating eigenvalues and eigenvectors for a given matrix
Competences
N/A
N/A
N/A
learning outcomes
Knowledge
classification of ordinary differential equations
formulation of basic initial and boundary value problems for ordinary differential equations.
knowledge of elementary methods for solving ordinary differential equations
Skills
finding solutions of the ordinary differential equations of the first order
finding solutions of the ordinary differential equations of the n-th order with constant coefficients
finding solutions of the systems of linear differential equations of the first order
finding eigenvalues and eigenfunctions of basic types of eigenvalue problems
ability to apply ordinary differential equations and basic methods of their solutions to problems from practice
Competences
N/A
N/A
N/A
teaching methods
Knowledge
Lecture supplemented with a discussion
Interactive lecture
Seminar classes
Skills
Lecture supplemented with a discussion
Interactive lecture
Seminar classes
Competences
Lecture supplemented with a discussion
Interactive lecture
Seminar classes
assessment methods
Knowledge
Test
Skills demonstration during practicum
Skills
Test
Skills demonstration during practicum
Competences
Test
Skills demonstration during practicum
Recommended literature
  • Braun, Martin. Differential Equations and Their Applications. New York, 1992. ISBN 978-0-387-94330-5.
  • Bronson, Richard; Costa, Gabriel B. Schaum's Outline of Differential Equations, Fifth Edition. New York, 2021. ISBN 978-1-2642-5882-6.
  • Kufner, Alois. Obyčejné diferenciální rovnice. 1. vyd. Plzeň : Západočeská univerzita, 1993. ISBN 80-7082-106-X.
  • Míka, Stanislav; Kufner, Alois. Okrajové úlohy pro obyčejné diferenciální rovnice. 2. upr. vyd. Praha : SNTL - Nakladatelství technické literatury, 1983.
  • Mošna, František. Obyčejné diferenciální rovnice. Univerzita Karlova, Praha, 2019. ISBN 978-80-7603-090-9.
  • Nagy, Jozef. Soustavy obyčejných diferenciálních rovnic : Vysokošk. příručka pro vys. školy techn. směru. 2., nezm. vyd. Praha : SNTL, 1983.
  • Ráb, Miloš. Metody řešení obyčejných diferenciálních rovnic. Masarykova univerzita. Brno., 2012. ISBN 978-80-210-5816-3.
  • Walter, Wolfgang. Ordinary Differential Equations. New York, 1998. ISBN 978-0-387-98459-9.


Study plans that include the course
Faculty Study plan (Version) Category of Branch/Specialization Recommended year of study Recommended semester