Course: Comp. Support in Mech. Engineering

« Back
Course title Comp. Support in Mech. Engineering
Course code KPV/PPVS
Organizational form of instruction Lecture + Tutorial
Level of course Bachelor
Year of study not specified
Semester Winter
Number of ECTS credits 4
Language of instruction Czech, English
Status of course Compulsory
Form of instruction Face-to-face
Work placements This is not an internship
Recommended optional programme components None
Lecturer(s)
  • Raban M., Ing.
  • Neupauer Yevgeniy, doc. Ing. Ph.D.
  • Holý Richard, Ing. Bc. Ph.D.
  • Veber Jan, doc. Ing. Ph.D.
  • Šípal Laurent, doc. Ing. CSc.
Course content
Excel charts and formulas, pivot tables and charts. Introduction to data processing, formats and data processing, classical batch data processing, linear, tree and network data structures. Basics of database data processing. Data structures in engineering: order, BOM and process. Algorithms of data structures processing in mechanical engineering. Independent work in a simple database system. Basic SQL queries. 1. Basic concepts of database processing, functional, data and object analysis 2. Conceptual modeling, E-R-A diagram, 3. Database models, relational model, transformation of KS into RDB model, data normalization 4. SQL language, formulation of queries, SQL examples 5. Possibilities of database corruption (technical, program, user), multi-user access to data 6. Application of simulation in mechanical engineering - case studies 7. Application of visualization and virtual reality in mechanical engineering 8. Linear data structures, tree and network data structures 9. Basic data structures in engineering, BOM, procedure, order and algorithms for their processing - initiation 10. Basic data structures in engineering, BOM, procedure, order and algorithms for their processing - completion 11. Examples of data structures in various information systems 12. Information system Helios Orange and its use in logistics and production management 13. Credit test Any changes in content and timing will be sent electronically.

Learning activities and teaching methods
Lecture with practical applications, E-learning, Multimedia supported teaching, Students' portfolio, One-to-One tutorial, Individual study
  • unspecified - 10 hours per semester
  • Preparation for comprehensive test (10-40) - 30 hours per semester
  • Contact hours - 52 hours per semester
  • Preparation for formative assessments (2-20) - 12 hours per semester
prerequisite
Knowledge
understand what algorithmization is
have basic knowledge of working with files
Skills
be able to work with MS Office tools (Word, Excel)
be able to work with PC
Competences
N/A
N/A
N/A
N/A
learning outcomes
Knowledge
to know the basic concepts of database data processing
to know what general linear and nonlinear data structures are
to know what data structures in mechanical engineering (BOM, process, order) are
to know the methods of determining the amount, cost and running time from data structures
know the basic types of actuators and sensors
Skills
perform data analysis of simple data processing tasks
propose a simple database
use SQL to work with databases
work with macros or scripts in the selected database tool
implement basic communication between the PC and the selected HW control unit
collect and store data from the selected HW
Competences
N/A
N/A
N/A
N/A
teaching methods
Knowledge
E-learning
Multimedia supported teaching
Individual study
One-to-One tutorial
Interactive lecture
Project-based instruction
Lecture supplemented with a discussion
Skills
Cooperative instruction
Project-based instruction
Task-based study method
Competences
Lecture supplemented with a discussion
Task-based study method
Individual study
Discussion
assessment methods
Knowledge
Test
Skills
Skills demonstration during practicum
Competences
Test
Project
Recommended literature
  • DeBarros Anthony. Practical SQL: A Beginner's Guide to Storytelling with Data. No Starch Press, 2018. ISBN 978-1593278274.
  • Kopeček, Pavel; Holub, Vojtěch. Úvod do zpracování dat. [Plzeň] : SmartMotion, 2013. ISBN 978-80-87539-49-1.
  • Kopeček, Pavel. Modelování a algoritmizace datových struktur ve strojírenství. [Plzeň] : SmartMotion, 2013. ISBN 978-80-87539-50-7.
  • Kopeček, Pavel. Příklad v MS Access. [Plzeň] : SmartMotion, 2013. ISBN 978-80-87539-51-4.
  • Kroenke, David; Auer, David J. Databáze. 1. vydání. 2015. ISBN 978-80-251-4352-0.
  • Kruczek, Aleš. Microsoft Access 2010 : podrobná uživatelská příručka. Vyd. 1. Brno : Computer Press, 2010. ISBN 978-80-251-3289-0.
  • Malaga, Miroslav; Ulrych, Zdeněk. Základy řízení robotů pro strojní inženýrství autoři: Miroslav Malaga, Zdeněk Ulrych. První vydání. 2020. ISBN 978-80261-0486-5.
  • Oppel, Andrew J. SQL bez předchozích znalostí : [průvodce pro samouky]. Vyd. 1. Brno : Computer Press, 2008. ISBN 978-80-251-1707-1.
  • Ryant, Ivan. Algoritmy a datové struktury objektově. Vydání první. 2017. ISBN 978-80-270-1660-0.
  • Ulrych, Zdeněk; Malaga, Miroslav. Základy robotiky - programování hardwarových modelů. První vydání. 2023. ISBN 978-80-261-1144-3.


Study plans that include the course
Faculty Study plan (Version) Category of Branch/Specialization Recommended year of study Recommended semester